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Residual Graph

Given a flow network G = (V, E') with capacities c, (for e € E)

For a flow f on G, define directed graph G = (Vf, Er) as follows:
* Nodesetly =V
* Foreachedgee = (u,v) in E, there are two edges in Ef:
— forward edge e = (u, v) with residual capacity ¢, — f (e)
— backward edge e’ = (v, u) with residual capacity f (e)
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Augmenting Path
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Augmenting Path
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Definition:
An augmenting path P is a (simple) s-t-path on the residual
graph G¢ on which each edge has residual capacity > 0.

bottleneck(P, f): minimum residual capacity on any edge of the
augmenting path P

Augment flow f to get flow f':
* For every forward edge (u,v) on P:

f'((w,v)) = f((u,v)) + bottleneck(P, f)

* For every backward edge (u,v) on P:

f'((ww) = f((v,w) — bottleneck(P, f)
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Ford-Fulkerson Algorithm
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* Improve flow using an augmenting path as long as possible:

1. Initially, f(e) = Oforalledgese € E, Gr = G

2. while there is an augmenting s-t-path P in G¢ do
3 Let P be an augmenting s-t-path in G¢;

4. f' = augment(f, P);

5 update f to be f;

6 update the residual graph G

7

end;
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Ford-Fulkerson Running Time
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Theorem: If all edge capacities are integers, the Ford-Fulkerson
algorithm can be implemented to run in O (mC) time.

Proof:
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s-t Cuts
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Definition:
An s-t cut is a partition (4, B) of the vertex set such thats € A4

andt € B
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Ford-Fulkerson Gives Optimal Solution .
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Lemma: If f is an s-t flow such that there is no augmenting path
in G, then there is an s-t cut (A%, B") in G for which

fl = c(A%, BY).

Theorem: The flow returned by the Ford-Fulkerson algorithm is a
maximum flow.

Theorem: Given a flow f of maximum value, we can compute an
s-t cut of minimum capacity in O(m) time.

Theorem: (Max-Flow Min-Cut Theorem)

In every flow network, the maximum value of an s-t flow is
equal to the minimum capacity of an s-t cut.
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Integer Capacities
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Theorem: (Integer-Valued Flows)

If all capacities in the flow network are integers, then there is a

maximum flow f for which the flow f(e) of every edge e is an
integer.
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Improved Algorithm
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Idea: Find the best augmenting path in each step
* best: path P with maximum bottleneck(P, f)

* Best path might be rather expensive to find
- find almost best path

e Scaling parameter A:
(initially, A = "max c, rounded down to next power of 2")

* Aslong as there is an augmenting path that improves the flow by
at least A, augment using such a path

e If there is no such path: A := 4/,
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Running Time: Scaling Max Flow Alg.
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Theorem: The number of augmentations of the algorithm with
scaling parameter and integer capacities is at most O(m log C). The
algorithm can be implemented in time 0 (m? log C).
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Maximum Flow Applications
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 Maximum flow has many applications

 Reducing a problem to a max flow problem can even be seen as
an important algorithmic technique

* Examples:

related network flow problems

computation of small cuts

computation of matchings

computing disjoint paths

scheduling problems

assignment problems with some side constraints
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Undirected Edges and Vertex Capacities  _
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Undirected Edges:
* Undirected edge {u, v}: add edges (u, v) and (v, u) to network

Vertex Capacities:
* Not only edges, but also (or only) nodes have capacities

* Capacity ¢, of node v & {s, t}:
fin@) = fow) <

* Replace node v by edge e, = {Vip, Vout}:
e
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Minimum s-t Cut

Given: undirected graph ¢ = (V,E), nodes s, t €V
s-t cut: Partition (A,B) of Vsuchthats € A,t € B

Size of cut (A4, B): number of edges crossing the cut

Objective: find s-t cut of minimum size
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Edge Connectivity
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Definition: A graph G = (V,E) is k-edge connected for an integer
k = 1if the graph Gy = (V,E \ X) is connected for every edge set

XCE|X|<k-1.

Goal: Compute edge connectivity A(G) of G
(and edge set X of size A(G) that divides G into = 2 parts)

* minimum set X is a minimum s-t cut forsome s,t €V
— Actually for all s, t in different components of Gy = (V,E \ X)

* Possible algorithm: fix s and find min s-t cut forallt # s
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Minimum s-t Vertex-Cut
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Given: undirected graph ¢ = (V,E), nodes s, t € V

s-t vertex cut: Set X € V suchthats,t € X and sand t are in
different components of the sub-graph G[V \ X] induced by V' \ X

Size of vertex cut: | X|

Objective: find s-t vertex-cut of minimum size
* Replace undirected edge {u, v} by (u, v) and (v, u)
 Compute max s-t flow for edge capacities co and node capacities

c, = 1forv #s,t
* Replace each node v by v;, and vy ¢:

* Min edge cut corresponds to min vertex cut in G
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Vertex Connectivity
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Definition: A graph G = (V,E) is k-vertex connected for an integer
k = 1if the sub-graph G[V \ X] induced by V' \ X is connected for
every edge set

XCV, |X|<k-1.

Goal: Compute vertex connectivity k(G ) of G
(and node set X of size k(G) that divides G into = 2 parts)

 Compute minimum s-t vertex cut for one fixed s and all t # s?
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Edge-Disjoint Paths
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Given: Graph G = (V,E) withnodes s,t € I/
Goal: Find as many edge-disjoint s-t paths as possible

Solution:
* Find max s-t flow in G with edge capacitiesc, = 1 foralle € E

Flow f induces |f| edge-disjoint paths:
* Integral capacities = can compute integral max flow f
* Get |f| edge-disjoint paths by greedily picking them

* Correctness follows from flow conservation f1(v) = f°ut(v)
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Vertex-Disjoint Paths
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Given: Graph G = (V,E) withnodes s,t € I/
Goal: Find as many internally vertex-disjoint s-t paths as possible

Solution:
* Find max s-t flow in G with node capacitiesc, = 1 forallv eV

Flow f induces |f| vertex-disjoint paths:
* Integral capacities = can compute integral max flow f
* Get |f| vertex-disjoint paths by greedily picking them

* Correctness follows from flow conservation f1(v) = f°ut(v)
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Menger’s Theorem
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Theorem: (edge version)

For every graph G = (V, E) with nodes s,t € V, the size of the
minimum s-t (edge) cut equals the maximum number of pairwise
edge-disjoint paths from s to t.

Theorem: (node version)

For every graph G = (V, E) with nodes s,t € I/, the size of the
minimum s-t vertex cut equals the maximum number of pairwise
internally vertex-disjoint paths from s to t

* Both versions can be seen as a special case of the max flow min
cut theorem
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Baseball Elimination
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Team Wins Losses To Play Against = 1;;
i w; ?; T; NY Balt. T. Bay
New York 81 70 11 - 2 5 2 3
Baltimore 79 77 6 2 - 2 1 1
Tampa Bay 79 75 8 5 2 - 1 1
Toronto 76 80 6 2 1 1 - 2
Boston 71 84 7 3 1 1 2 -

* Only wins/losses possible (no ties), winner: team with most wins

* Which teams can still win (as least as many wins as top team)?
* Boston is eliminated (cannot win):

— Boston can get at most 78 wins, New York already has 81 wins

* Ifforsomeli,j: w; +1; <w; 2 team i is eliminated

» Sufficient condition, but not a necessary one!
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Baseball Elimination
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Team Wins Losses To Play Against = 1;;
i w; ?; T; NY Balt. T. Bay
New York 81 70 11 - 2 5 2 3
Baltimore 79 77 6 2 - 2 1 1
Tampa Bay 79 75 8 5 2 - 1 1
Toronto 76 80 6 2 1 1 - 2
Boston 71 84 7 3 1 1 2 -

e Can Toronto still finish first?

 Toronto can get 82 > 81 wins, but:
NY and Tampa have to play 5 more times against each other
- if NY wins two, it gets 83 wins, otherwise, Tampa has 83 wins

* Hence: Toronto cannot finish first
 How about the others? How can we solve this in general?
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Max Flow Formulation
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e Canteam 3 finish with most wins?

Remaining number team
of games between
the 2 teams

Number of wins team i can
game nodes have to not beat team 3

nodes

* Team 3 can finish first iff all source-game edges are saturated
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Reason for Elimination
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AL East: Aug 30, 1996
Team Wins Losses To Play Against = 1;;
i w; ?; T; \'\ Balt. Bost. Tor

New York 75 59 28 - 3 8 7 3
Baltimore 71 63 28 3 - 2 7 4
Boston 69 66 27 8 2 - 0 0
Toronto 63 72 27 7 7 0 - 0
Detroit 49 86 27 3 4 0 0 -

 Detroit could finish with 49 4+ 27 = 76 wins
* Consider R = {NY, Bal, Bos, Tor}

— Have together already won w(R) = 278 games

— Must together win at least ¥(R) = 27 more games

* On average, teamsin R win
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Reason for Elimination of Team x
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Certificate of elimination:

R € X\{x},

w(R) :

lER
w
#Hwins of
nodesin R

Team x € X is eliminated by R if
w(R) + r(R)
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r(R) = z Tij

i JER
w

H#remaining games
among nodes in R
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