Chapter 6
Graph Algorithms

Algorithm Theory
WS 2016/17

Fabian Kuhn

UNI

FREIBURG

Flow Network

UNI

FREIBURG

20

10

Algorithm Theory, WS 2016/17

Fabian Kuhn

10

20

UNI
f

FREIBURG

Residual Graph

Given a flow network G = (V, E') with capacities c, (for e € E)

For a flow f on G, define directed graph G = (Vf, Er) as follows:
* Nodesetly =V
* Foreachedgee = (u,v) in E, there are two edges in Ef:
— forward edge e = (u, v) with residual capacity ¢, — f (e)
— backward edge e’ = (v, u) with residual capacity f (e)

Algorithm Theory, WS 2016/17 Fabian Kuhn

Augmenting Path

UNI

FREIBURG

Residual Graph G

Algorithm Theory, WS 2016/17

Fabian Kuhn

UNI

Augmenting Path

FREIBURG

Definition:
An augmenting path P is a (simple) s-t-path on the residual
graph G¢ on which each edge has residual capacity > 0.

bottleneck(P, f): minimum residual capacity on any edge of the
augmenting path P

Augment flow f to get flow f':
* For every forward edge (u,v) on P:

f'((w,v)) = f((u,v)) + bottleneck(P, f)

* For every backward edge (u,v) on P:

f'((ww) = f((v,w) — bottleneck(P, f)

Algorithm Theory, WS 2016/17 Fabian Kuhn 5

Ford-Fulkerson Algorithm

|
FRE:BURG

UNI

* Improve flow using an augmenting path as long as possible:

1. Initially, f(e) = Oforalledgese € E, Gr = G

2. while there is an augmenting s-t-path P in G¢ do
3 Let P be an augmenting s-t-path in G¢;

4. f' = augment(f, P);

5 update f to be f;

6 update the residual graph G

7

end;

Algorithm Theory, WS 2016/17 Fabian Kuhn 6

UNI

Ford-Fulkerson Running Time

FREIBURG

Theorem: If all edge capacities are integers, the Ford-Fulkerson
algorithm can be implemented to run in O (mC) time.

Proof:

Algorithm Theory, WS 2016/17 Fabian Kuhn 7

s-t Cuts

UNI
f

FREIBURG

Definition:
An s-t cut is a partition (4, B) of the vertex set such thats € A4

andt € B
@ 20
A » 20 Q

15 0 o 15 B

5 5 t
10

A =l

15

Algorithm Theory, WS 2016/17 Fabian Kuhn 8

Ford-Fulkerson Gives Optimal Solution .

UNI
FREIBURG

Lemma: If f is an s-t flow such that there is no augmenting path
in G, then there is an s-t cut (A%, B") in G for which

fl = c(A%, BY).

Theorem: The flow returned by the Ford-Fulkerson algorithm is a
maximum flow.

Theorem: Given a flow f of maximum value, we can compute an
s-t cut of minimum capacity in O(m) time.

Theorem: (Max-Flow Min-Cut Theorem)

In every flow network, the maximum value of an s-t flow is
equal to the minimum capacity of an s-t cut.

Algorithm Theory, WS 2016/17 Fabian Kuhn 9

Integer Capacities

UNI
f

FREIBURG

Theorem: (Integer-Valued Flows)

If all capacities in the flow network are integers, then there is a

maximum flow f for which the flow f(e) of every edge e is an
integer.

Algorithm Theory, WS 2016/17 Fabian Kuhn 10

UNI

Improved Algorithm

FREIBURG

Idea: Find the best augmenting path in each step
* best: path P with maximum bottleneck(P, f)

* Best path might be rather expensive to find
- find almost best path

e Scaling parameter A:
(initially, A = "max c, rounded down to next power of 2")

* Aslong as there is an augmenting path that improves the flow by
at least A, augment using such a path

e If there is no such path: A := 4/,

Algorithm Theory, WS 2016/17 Fabian Kuhn 11

UNI

Running Time: Scaling Max Flow Alg.

FREIBURG

Theorem: The number of augmentations of the algorithm with
scaling parameter and integer capacities is at most O(m log C). The
algorithm can be implemented in time 0 (m? log C).

Algorithm Theory, WS 2016/17 Fabian Kuhn 12

Maximum Flow Applications

UNI
FREIBURG

 Maximum flow has many applications

 Reducing a problem to a max flow problem can even be seen as
an important algorithmic technique

* Examples:

related network flow problems

computation of small cuts

computation of matchings

computing disjoint paths

scheduling problems

assignment problems with some side constraints

Algorithm Theory, WS 2016/17 Fabian Kuhn 13

Undirected Edges and Vertex Capacities _

UNI

FREIBURG

Undirected Edges:
* Undirected edge {u, v}: add edges (u, v) and (v, u) to network

Vertex Capacities:
* Not only edges, but also (or only) nodes have capacities

* Capacity ¢, of node v & {s, t}:
fin@) = fow) <

* Replace node v by edge e, = {Vip, Vout}:
e

Algorithm Theory, WS 2016/17 Fabian Kuhn 14

Minimum s-t Cut

Given: undirected graph ¢ = (V,E), nodes s, t €V
s-t cut: Partition (A,B) of Vsuchthats € A,t € B

Size of cut (A4, B): number of edges crossing the cut

Objective: find s-t cut of minimum size

Algorithm Theory, WS 2016/17 Fabian Kuhn

UNI
f

FREIBURG

UNI

Edge Connectivity

FREIBURG

Definition: A graph G = (V,E) is k-edge connected for an integer
k = 1if the graph Gy = (V,E \ X) is connected for every edge set

XCE|X|<k-1.

Goal: Compute edge connectivity A(G) of G
(and edge set X of size A(G) that divides G into = 2 parts)

* minimum set X is a minimum s-t cut forsome s,t €V
— Actually for all s, t in different components of Gy = (V,E \ X)

* Possible algorithm: fix s and find min s-t cut forallt # s
Algorithm Theory, WS 2016/17 Fabian Kuhn 16

Minimum s-t Vertex-Cut

UNI
FREIBURG

Given: undirected graph ¢ = (V,E), nodes s, t € V

s-t vertex cut: Set X € V suchthats,t € X and sand t are in
different components of the sub-graph G[V \ X] induced by V' \ X

Size of vertex cut: | X|

Objective: find s-t vertex-cut of minimum size
* Replace undirected edge {u, v} by (u, v) and (v, u)
 Compute max s-t flow for edge capacities co and node capacities

c, = 1forv #s,t
* Replace each node v by v;, and vy ¢:

* Min edge cut corresponds to min vertex cut in G

Algorithm Theory, WS 2016/17 Fabian Kuhn 17

Vertex Connectivity

UNI
FREIBURG

Definition: A graph G = (V,E) is k-vertex connected for an integer
k = 1if the sub-graph G[V \ X] induced by V' \ X is connected for
every edge set

XCV, |X|<k-1.

Goal: Compute vertex connectivity k(G) of G
(and node set X of size k(G) that divides G into = 2 parts)

 Compute minimum s-t vertex cut for one fixed s and all t # s?

Algorithm Theory, WS 2016/17 Fabian Kuhn 18

Edge-Disjoint Paths

UNI
f

FREIBURG

Given: Graph G = (V,E) withnodes s,t € I/
Goal: Find as many edge-disjoint s-t paths as possible

Solution:
* Find max s-t flow in G with edge capacitiesc, = 1 foralle € E

Flow f induces |f| edge-disjoint paths:
* Integral capacities = can compute integral max flow f
* Get |f| edge-disjoint paths by greedily picking them

* Correctness follows from flow conservation f1(v) = f°ut(v)

Algorithm Theory, WS 2016/17 Fabian Kuhn 19

Vertex-Disjoint Paths

UNI
f

FREIBURG

Given: Graph G = (V,E) withnodes s,t € I/
Goal: Find as many internally vertex-disjoint s-t paths as possible

Solution:
* Find max s-t flow in G with node capacitiesc, = 1 forallv eV

Flow f induces |f| vertex-disjoint paths:
* Integral capacities = can compute integral max flow f
* Get |f| vertex-disjoint paths by greedily picking them

* Correctness follows from flow conservation f1(v) = f°ut(v)

Algorithm Theory, WS 2016/17 Fabian Kuhn 20

Menger’s Theorem

UNI

FREIBURG

Theorem: (edge version)

For every graph G = (V, E) with nodes s,t € V, the size of the
minimum s-t (edge) cut equals the maximum number of pairwise
edge-disjoint paths from s to t.

Theorem: (node version)

For every graph G = (V, E) with nodes s,t € I/, the size of the
minimum s-t vertex cut equals the maximum number of pairwise
internally vertex-disjoint paths from s to t

* Both versions can be seen as a special case of the max flow min
cut theorem

Algorithm Theory, WS 2016/17 Fabian Kuhn 21

Baseball Elimination

UNI

FREIBURG

Team Wins Losses To Play Against = 1;;
i w; ?; T; NY Balt. T. Bay
New York 81 70 11 - 2 5 2 3
Baltimore 79 77 6 2 - 2 1 1
Tampa Bay 79 75 8 5 2 - 1 1
Toronto 76 80 6 2 1 1 - 2
Boston 71 84 7 3 1 1 2 -

* Only wins/losses possible (no ties), winner: team with most wins

* Which teams can still win (as least as many wins as top team)?
* Boston is eliminated (cannot win):

— Boston can get at most 78 wins, New York already has 81 wins

* Ifforsomeli,j: w; +1; <w; 2 team i is eliminated

» Sufficient condition, but not a necessary one!

Algorithm Theory, WS 2016/17

Fabian Kuhn

Baseball Elimination

UNI

FREIBURG

Team Wins Losses To Play Against = 1;;
i w; ?; T; NY Balt. T. Bay
New York 81 70 11 - 2 5 2 3
Baltimore 79 77 6 2 - 2 1 1
Tampa Bay 79 75 8 5 2 - 1 1
Toronto 76 80 6 2 1 1 - 2
Boston 71 84 7 3 1 1 2 -

e Can Toronto still finish first?

 Toronto can get 82 > 81 wins, but:
NY and Tampa have to play 5 more times against each other
- if NY wins two, it gets 83 wins, otherwise, Tampa has 83 wins

* Hence: Toronto cannot finish first
 How about the others? How can we solve this in general?

Algorithm Theory, WS 2016/17 Fabian Kuhn 23

Max Flow Formulation

UNI
FREIBURG

e Canteam 3 finish with most wins?

Remaining number team
of games between
the 2 teams

Number of wins team i can
game nodes have to not beat team 3

nodes

* Team 3 can finish first iff all source-game edges are saturated

Algorithm Theory, WS 2016/17 Fabian Kuhn 24

Reason for Elimination

S&
AL East: Aug 30, 1996
Team Wins Losses To Play Against = 1;;
i w; ?; T; \'\ Balt. Bost. Tor

New York 75 59 28 - 3 8 7 3
Baltimore 71 63 28 3 - 2 7 4
Boston 69 66 27 8 2 - 0 0
Toronto 63 72 27 7 7 0 - 0
Detroit 49 86 27 3 4 0 0 -

 Detroit could finish with 49 4+ 27 = 76 wins
* Consider R = {NY, Bal, Bos, Tor}

— Have together already won w(R) = 278 games

— Must together win at least ¥(R) = 27 more games

* On average, teamsin R win

Algorithm Theory, WS 2016/17

278+27

Fabian Kuhn

= 76.25 games

25

Reason for Elimination of Team x

|
FRE:BURG

UNI

Certificate of elimination:

R € X\{x},

w(R) :

lER
w
#Hwins of
nodesin R

Team x € X is eliminated by R if
w(R) + r(R)

Algorithm Theory, WS 2016/17

R

> Wy T Ty.

Fabian Kuhn

r(R) = z Tij

i JER
w

H#remaining games
among nodes in R

26

