
Chapter 6

Graph Algorithms

Algorithm Theory
WS 2016/17

Fabian Kuhn

Algorithm Theory, WS 2016/17 Fabian Kuhn 2

Flow Network

𝑠 𝑡

𝑢

𝑣

20

20

10

10

30

Algorithm Theory, WS 2016/17 Fabian Kuhn 3

Residual Graph

Given a flow network 𝐺 = 𝑉, 𝐸 with capacities 𝑐𝑒 (for 𝑒 ∈ 𝐸)

For a flow 𝑓 on 𝐺, define directed graph 𝐺𝑓 = (𝑉𝑓 , 𝐸𝑓) as follows:

• Node set 𝑉𝑓 = 𝑉

• For each edge 𝑒 = (𝑢, 𝑣) in 𝐸, there are two edges in 𝐸𝑓:

– forward edge 𝑒 = (𝑢, 𝑣) with residual capacity 𝑐𝑒 − 𝑓(𝑒)

– backward edge 𝑒′ = (𝑣, 𝑢) with residual capacity 𝑓(𝑒)

𝑠 𝑡

𝑢

𝑣

20

20

10

10

30

𝟐𝟎

𝟐𝟎

𝟐𝟎

Algorithm Theory, WS 2016/17 Fabian Kuhn 4

Augmenting Path

Residual Graph 𝑮𝒇

𝑠

𝑥

𝑢

𝑦

𝑣

𝑤

𝑞

𝑧

𝑡

5
10 𝟏𝟓

5

0

15

𝟏𝟎
0

0 5

0

10
𝟏𝟓

𝟏𝟓

0

10

10

0
5

20

𝟏𝟎

10

10

10
10 10

10

𝟏𝟎

0

5 5

5

Algorithm Theory, WS 2016/17 Fabian Kuhn 5

Augmenting Path

Definition:
An augmenting path 𝑃 is a (simple) 𝑠-𝑡-path on the residual
graph 𝐺𝑓 on which each edge has residual capacity > 0.

bottleneck(𝑃, 𝑓): minimum residual capacity on any edge of the
augmenting path 𝑃

Augment flow 𝒇 to get flow 𝒇′:

• For every forward edge (𝑢, 𝑣) on 𝑃:

𝒇′ 𝒖, 𝒗 ≔ 𝒇 𝒖, 𝒗 + 𝐛𝐨𝐭𝐭𝐥𝐞𝐧𝐞𝐜𝐤 𝑷, 𝒇

• For every backward edge (𝑢, 𝑣) on 𝑃:

𝒇′ 𝒗, 𝒖 ≔ 𝒇 𝒗, 𝒖 − 𝐛𝐨𝐭𝐭𝐥𝐞𝐧𝐞𝐜𝐤(𝑷, 𝒇)

Algorithm Theory, WS 2016/17 Fabian Kuhn 6

Ford-Fulkerson Algorithm

• Improve flow using an augmenting path as long as possible:

1. Initially, 𝑓 𝑒 = 0 for all edges 𝑒 ∈ 𝐸, 𝐺𝑓 = 𝐺

2. while there is an augmenting 𝑠-𝑡-path 𝑃 in 𝐺𝑓 do

3. Let 𝑃 be an augmenting 𝑠-𝑡-path in 𝐺𝑓;

4. 𝑓′ ≔ augment(𝑓, 𝑃);

5. update 𝑓 to be 𝑓′;

6. update the residual graph 𝐺𝑓

7. end;

Algorithm Theory, WS 2016/17 Fabian Kuhn 7

Ford-Fulkerson Running Time

Theorem: If all edge capacities are integers, the Ford-Fulkerson
algorithm can be implemented to run in 𝑂(𝑚𝐶) time.

Proof:

Algorithm Theory, WS 2016/17 Fabian Kuhn 8

𝑠-𝑡 Cuts

Definition:
An 𝑠-𝑡 cut is a partition (𝐴, 𝐵) of the vertex set such that 𝑠 ∈ 𝐴
and 𝑡 ∈ 𝐵

𝑠

𝑥

𝑢

𝑦

𝑣

𝑤

𝑞

𝑧

𝑡

15
20

20

15

10

10

20

15

20

15

15

15

10

5

20

20

𝑨

𝑩

Algorithm Theory, WS 2016/17 Fabian Kuhn 9

Ford-Fulkerson Gives Optimal Solution

Lemma: If 𝑓 is an 𝑠-𝑡 flow such that there is no augmenting path
in 𝐺𝑓, then there is an 𝑠-𝑡 cut (𝐴∗, 𝐵∗) in 𝐺 for which

𝒇 = 𝒄 𝑨∗, 𝑩∗ .

Theorem: The flow returned by the Ford-Fulkerson algorithm is a
maximum flow.

Theorem: Given a flow 𝑓 of maximum value, we can compute an
𝑠-𝑡 cut of minimum capacity in 𝑂(𝑚) time.

Theorem: (Max-Flow Min-Cut Theorem)

In every flow network, the maximum value of an 𝑠-𝑡 flow is
equal to the minimum capacity of an 𝑠-𝑡 cut.

Algorithm Theory, WS 2016/17 Fabian Kuhn 10

Integer Capacities

Theorem: (Integer-Valued Flows)

If all capacities in the flow network are integers, then there is a
maximum flow 𝑓 for which the flow 𝑓 𝑒 of every edge 𝑒 is an
integer.

Algorithm Theory, WS 2016/17 Fabian Kuhn 11

Improved Algorithm

Idea: Find the best augmenting path in each step

• best: path 𝑃 with maximum bottleneck(𝑃, 𝑓)

• Best path might be rather expensive to find
 find almost best path

• Scaling parameter 𝚫:
(initially, Δ = "max 𝑐𝑒 rounded down to next power of 2")

• As long as there is an augmenting path that improves the flow by
at least Δ, augment using such a path

• If there is no such path: Δ ≔ ΤΔ 2

Algorithm Theory, WS 2016/17 Fabian Kuhn 12

Running Time: Scaling Max Flow Alg.

Theorem: The number of augmentations of the algorithm with
scaling parameter and integer capacities is at most 𝑂(𝑚 log 𝐶). The
algorithm can be implemented in time 𝑂 𝑚2 log 𝐶 .

Algorithm Theory, WS 2016/17 Fabian Kuhn 13

Maximum Flow Applications

• Maximum flow has many applications

• Reducing a problem to a max flow problem can even be seen as
an important algorithmic technique

• Examples:
– related network flow problems

– computation of small cuts

– computation of matchings

– computing disjoint paths

– scheduling problems

– assignment problems with some side constraints

– …

Algorithm Theory, WS 2016/17 Fabian Kuhn 14

Undirected Edges and Vertex Capacities

Undirected Edges:

• Undirected edge {𝑢, 𝑣}: add edges 𝑢, 𝑣 and (𝑣, 𝑢) to network

Vertex Capacities:

• Not only edges, but also (or only) nodes have capacities

• Capacity 𝑐𝑣 of node 𝑣 ∉ {𝑠, 𝑡}:

𝑓in 𝑣 = 𝑓out 𝑣 ≤ 𝑐𝑣

• Replace node 𝑣 by edge 𝑒𝑣 = {𝑣in, 𝑣out}:

𝑣 𝑣in 𝑣out
𝒄𝒗

Algorithm Theory, WS 2016/17 Fabian Kuhn 15

Minimum 𝑠-𝑡 Cut

Given: undirected graph 𝐺 = (𝑉, 𝐸), nodes 𝑠, 𝑡 ∈ 𝑉

𝒔-𝒕 cut: Partition (𝐴, 𝐵) of 𝑉 such that 𝑠 ∈ 𝐴, 𝑡 ∈ 𝐵

Size of cut (𝑨,𝑩): number of edges crossing the cut

Objective: find 𝑠-𝑡 cut of minimum size

Algorithm Theory, WS 2016/17 Fabian Kuhn 16

Edge Connectivity

Definition: A graph 𝐺 = 𝑉, 𝐸 is 𝑘-edge connected for an integer
𝑘 ≥ 1 if the graph 𝐺𝑋 = (𝑉, 𝐸 ∖ 𝑋) is connected for every edge set

𝑋 ⊆ 𝐸, 𝑋 ≤ 𝑘 − 1.

Goal: Compute edge connectivity 𝜆(𝐺) of 𝐺
(and edge set 𝑋 of size 𝜆(𝐺) that divides 𝐺 into ≥ 2 parts)

• minimum set 𝑋 is a minimum 𝑠-𝑡 cut for some 𝑠, 𝑡 ∈ 𝑉
– Actually for all 𝑠, 𝑡 in different components of 𝐺𝑋 = (𝑉, 𝐸 ∖ 𝑋)

• Possible algorithm: fix 𝑠 and find min 𝑠-𝑡 cut for all 𝑡 ≠ 𝑠

Algorithm Theory, WS 2016/17 Fabian Kuhn 17

Minimum 𝑠-𝑡 Vertex-Cut

Given: undirected graph 𝐺 = (𝑉, 𝐸), nodes 𝑠, 𝑡 ∈ 𝑉

𝒔-𝒕 vertex cut: Set 𝑋 ⊂ 𝑉 such that 𝑠, 𝑡 ∉ 𝑋 and 𝑠 and 𝑡 are in
different components of the sub-graph 𝐺[𝑉 ∖ 𝑋] induced by 𝑉 ∖ 𝑋

Size of vertex cut: |𝑋|

Objective: find 𝑠-𝑡 vertex-cut of minimum size

• Replace undirected edge {𝑢, 𝑣} by (𝑢, 𝑣) and (𝑣, 𝑢)

• Compute max 𝑠-𝑡 flow for edge capacities ∞ and node capacities

𝑐𝑣 = 1 for 𝑣 ≠ 𝑠, 𝑡

• Replace each node 𝑣 by 𝑣in and 𝑣out:

• Min edge cut corresponds to min vertex cut in 𝐺

Algorithm Theory, WS 2016/17 Fabian Kuhn 18

Vertex Connectivity

Definition: A graph 𝐺 = 𝑉, 𝐸 is 𝑘-vertex connected for an integer
𝑘 ≥ 1 if the sub-graph 𝐺[𝑉 ∖ 𝑋] induced by 𝑉 ∖ 𝑋 is connected for
every edge set

𝑋 ⊆ 𝑉, 𝑋 ≤ 𝑘 − 1.

Goal: Compute vertex connectivity 𝜅(𝐺) of 𝐺
(and node set 𝑋 of size 𝜅(𝐺) that divides 𝐺 into ≥ 2 parts)

• Compute minimum 𝑠-𝑡 vertex cut for one fixed 𝑠 and all 𝑡 ≠ 𝑠?

Algorithm Theory, WS 2016/17 Fabian Kuhn 19

Edge-Disjoint Paths

Given: Graph 𝐺 = (𝑉, 𝐸) with nodes 𝑠, 𝑡 ∈ 𝑉

Goal: Find as many edge-disjoint 𝑠-𝑡 paths as possible

Solution:

• Find max 𝑠-𝑡 flow in 𝐺 with edge capacities 𝑐𝑒 = 1 for all 𝑒 ∈ 𝐸

Flow 𝑓 induces 𝑓 edge-disjoint paths:

• Integral capacities  can compute integral max flow 𝑓

• Get 𝑓 edge-disjoint paths by greedily picking them

• Correctness follows from flow conservation 𝑓in 𝑣 = 𝑓out(𝑣)

Algorithm Theory, WS 2016/17 Fabian Kuhn 20

Vertex-Disjoint Paths

Given: Graph 𝐺 = (𝑉, 𝐸) with nodes 𝑠, 𝑡 ∈ 𝑉

Goal: Find as many internally vertex-disjoint 𝑠-𝑡 paths as possible

Solution:

• Find max 𝑠-𝑡 flow in 𝐺 with node capacities 𝑐𝑣 = 1 for all 𝑣 ∈ 𝑉

Flow 𝑓 induces 𝑓 vertex-disjoint paths:

• Integral capacities  can compute integral max flow 𝑓

• Get 𝑓 vertex-disjoint paths by greedily picking them

• Correctness follows from flow conservation 𝑓in 𝑣 = 𝑓out(𝑣)

Algorithm Theory, WS 2016/17 Fabian Kuhn 21

Menger’s Theorem

Theorem: (edge version)
For every graph 𝐺 = (𝑉, 𝐸) with nodes 𝑠, 𝑡 ∈ 𝑉, the size of the
minimum 𝑠-𝑡 (edge) cut equals the maximum number of pairwise
edge-disjoint paths from 𝑠 to 𝑡.

Theorem: (node version)
For every graph 𝐺 = (𝑉, 𝐸) with nodes 𝑠, 𝑡 ∈ 𝑉, the size of the
minimum 𝑠-𝑡 vertex cut equals the maximum number of pairwise
internally vertex-disjoint paths from 𝑠 to 𝑡

• Both versions can be seen as a special case of the max flow min
cut theorem

Algorithm Theory, WS 2016/17 Fabian Kuhn 22

Baseball Elimination

• Only wins/losses possible (no ties), winner: team with most wins

• Which teams can still win (as least as many wins as top team)?

• Boston is eliminated (cannot win):
– Boston can get at most 78 wins, New York already has 81 wins

• If for some 𝑖, 𝑗: 𝑤𝑖 + 𝑟𝑖 < 𝑤𝑗  team 𝑖 is eliminated

• Sufficient condition, but not a necessary one!

Team Wins Losses To Play Against = 𝒓𝒊𝒋

𝒊 𝒘𝒊 ℓ𝒊 𝒓𝒊 NY Balt. T. Bay Tor. Bost.

New York 81 70 11 - 2 5 2 3

Baltimore 79 77 6 2 - 2 1 1

Tampa Bay 79 75 8 5 2 - 1 1

Toronto 76 80 6 2 1 1 - 2

Boston 71 84 7 3 1 1 2 -

Algorithm Theory, WS 2016/17 Fabian Kuhn 23

Baseball Elimination

• Can Toronto still finish first?

• Toronto can get 82 > 81 wins, but:
NY and Tampa have to play 5 more times against each other
 if NY wins two, it gets 83 wins, otherwise, Tampa has 83 wins

• Hence: Toronto cannot finish first

• How about the others? How can we solve this in general?

Team Wins Losses To Play Against = 𝒓𝒊𝒋

𝒊 𝒘𝒊 ℓ𝒊 𝒓𝒊 NY Balt. T. Bay Tor. Bost.

New York 81 70 11 - 2 5 2 3

Baltimore 79 77 6 2 - 2 1 1

Tampa Bay 79 75 8 5 2 - 1 1

Toronto 76 80 6 2 1 1 - 2

Boston 71 84 7 3 1 1 2 -

Algorithm Theory, WS 2016/17 Fabian Kuhn 24

Max Flow Formulation

• Can team 3 finish with most wins?

• Team 3 can finish first iff all source-game edges are saturated

1-2

1-4

1-5

2-4

2-5

4-5

game
nodes

𝒔

1

2

4

5

𝒕

∞

∞ team
nodes

Remaining number
of games between

the 2 teams

Number of wins team 𝒊 can
have to not beat team 𝟑

Algorithm Theory, WS 2016/17 Fabian Kuhn 25

Reason for Elimination

• Detroit could finish with 49 + 27 = 76 wins

• Consider 𝑅 = {NY, Bal, Bos, Tor}
– Have together already won 𝑤 𝑅 = 278 games

– Must together win at least 𝑟 𝑅 = 27 more games

• On average, teams in 𝑅 win
278+27

4
= 76.25 games

Team Wins Losses To Play Against = 𝒓𝒊𝒋

𝒊 𝒘𝒊 ℓ𝒊 𝒓𝒊 NY Balt. Bost. Tor. Detr.

New York 75 59 28 - 3 8 7 3

Baltimore 71 63 28 3 - 2 7 4

Boston 69 66 27 8 2 - 0 0

Toronto 63 72 27 7 7 0 - 0

Detroit 49 86 27 3 4 0 0 -

AL East: Aug 30, 1996

Algorithm Theory, WS 2016/17 Fabian Kuhn 26

Reason for Elimination of Team 𝑥

Certificate of elimination:

𝑅 ⊆ 𝑋\{𝑥}, 𝑤 𝑅 ≔ ෍

𝑖∈𝑅

𝑤𝑖 , 𝑟 𝑅 ≔ ෍

𝑖,𝑗∈𝑅

𝑟𝑖,𝑗

Team 𝑥 ∈ 𝑋 is eliminated by 𝑅 if

𝑤 𝑅 + 𝑟(𝑅)

|𝑅|
> 𝑤𝑥 + 𝑟𝑥 .

ቄ ቄ

#wins of
nodes in 𝑅

#remaining games
among nodes in 𝑅

