Chapter 6
Graph Algorithms

Algorithm Theory
WS 2016/17

Fabian Kuhn

UNI

FREIBURG

Flow Network

UNI
FREIBURG

Algorithm Theory, WS 2016/17

Fabian Kuhn 2

UNI
f

FREIBURG

Residual Graph

Given a flow network G = (V, E') with capacities c, (for e € E)

For a flow f on G, define directed graph G = (Vf, Er) as follows:
* Nodesetly =V

* Foreachedgee = (u,v) in E, there are two edges in Ef:
— forward edge e = (u, v) with residual capacity ¢, — f (e)
— backward edge e’ = (v, u) with residual capacity f (e)

————

Algorithm Theory, WS 2016/17 Fabian Kuhn

UNI

Augmenting Path

FREIBURG

Residual Graph G

Algorithm Theory, WS 2016/17 Fabian Kuhn 4

UNI

Augmenting Path

FREIBURG

Definition:
An augmenting path P is a (simple) s-t-path on the residual
graph G¢ on which each edge has residual capacity > 0.

bottleneck(P, f): minimum residual capacity on any edge of the
- augmenting path P

Augment flow f to get flow f':
* For every forward edge (u,v) on P:

f'((w,v)) = f((u,v)) + bottleneck(P, f)
* For every backward edge (u,v) on P:

f'((ww) = f((v,w) — bottleneck(P, f)

Algorithm Theory, WS 2016/17 Fabian Kuhn 5

UNI

Ford-Fulkerson Algorithm

FREIBURG

* Improve flow using an augmenting path as long as possible:

1. Initially, f(e) = Oforalledgese € E, Gr = G

while there is an augmenting s-t-path P in Gf do

2.

3 Let P be an augmenting s-t-path in G¢;
4. f' = augment(f, P);

5 update f to be f;

6 update the residual graph G

7

end;

Algorithm Theory, WS 2016/17 Fabian Kuhn 6

UNI

Ford-Fulkerson Running Time

FREIBURG

Theorem: If all edge capacities are integers, the Ford-Fulkerson
algorithm can be implemented to run in O (mC) time.

Proof:
5&5#{3 = Way {Z(W valug

Algorithm Theory, WS 2016/17 Fabian Kuhn 7

s-t Cuts

UNI
f

FREIBURG

Definition:
An s-t cut is a partition (4, B) of the vertex set such thats € A4
andt € B

A .
‘5
a%o'

Algorithm Theory, WS 2016/17 Fabian Kuhn 8

Ford-Fulkerson Gives Optimal Solution .

UNI
FREIBURG

Lemma: If f is an s-t flow such that there is no augmenting path
in G, then there is an s-t cut (A%, B") in G for which

ﬂ: c(4*,B").

Theorem: The flow returned by the Ford-Fulkerson algorithm is a
maximum flow.

Theorem: Given a flowi of maximum value, we can compute an
s-t cut of minimum capacity in O(m) time.

Theorem: (Max Flow Min-Cut Theorem)

———

In every flow network, the maximum value of an s-t flow is
equal to the minimum capacity of an s-t cut.

Algorithm Theory, WS 2016/17 Fabian Kuhn 9

Integer Capacities

UNI
f

FREIBURG

Theorem: (Integer-Valued Flows)

If all capacities in the flow network are integers, then there is a

maximum flow f for which the flow f(e) of every edge e is an
integer.

Algorithm Theory, WS 2016/17 Fabian Kuhn 10

UNI

Improved Algorithm

FREIBURG

Idea: Find the best augmenting path in each step
* best: path P with maximum bottleneck(P, f)

* Best path might be rather expensive to find
- find almost best path

e Scaling parameter A:
(initially, A = "max c, rounded down to next power of 2")

* Aslong as there is an augmenting path that improves the flow by
at least A, augment using such a path

e If there is no such path: A := 4/,

Algorithm Theory, WS 2016/17 Fabian Kuhn 11

UNI

Running Time: Scaling Max Flow Alg.

FREIBURG

Theorem: The number of augmentations of the algorithm with
scaling parameter and integer capacities is at most O(mlog C). The
algorithm can be implemented in time 0 (m? log C). 5

Olw-n)

Algorithm Theory, WS 2016/17 Fabian Kuhn 12

Maximum Flow Applications

UNI
FREIBURG

 Maximum flow has many applications

 Reducing a problem to a max flow problem can even be seen as
an important algorithmic technique

* Examples:

related network flow problems

computation of small cuts

computation of matchings

computing disjoint paths

scheduling problems

assignment problems with some side constraints

Algorithm Theory, WS 2016/17 Fabian Kuhn 13

Undirected Edges and Vertex Capacits_ies .

UNI
FREIBURG

“u — Vo e u T,
Undirected Edges: o—g ©° Y~ @s/ Y
* Undirected edge {u, v}: add edges (u, v) and (v, u) to network
W oS J
Vertex Capacities: v >q?\8-bow

* Not only edges, but also (or only) nodes have capacities

* Capacity ¢, of node v € {s, t}:

fir@) = fo"0) < ¢

* Replace node v by edge e, = {Vip, Vout}:
caf- Cv

Algorithm Theory, WS 2016/17 Fabian Kuhn 14

Minimum s-t Cut

UNI

FREIBURG

Given: undirected graph ¢ = (V,E), nodes s, t €V
s-t cut: Partition (A,B) of Vsuchthats € A,t € B

Size of cut (A4, B): number of edges crossing the cut

>
| (/
CaE 2D

#e‘% =site «f cut =0 (w;-u\)
Objective: find s-t cut of minimum size -

cneale &_(w wedwupek | \) walee eJy(dineled —e —> < o
2) edge Caﬁ)dc:vc}ﬁ‘eg =)

6 & _— o 'Ad

rw«u‘m!; g

g?n 4 Q.(“ S qu J(ch"‘

Algorithm Theory, WS 2016/17 Fabian Kuhn 15

O(m - Sise a‘l i s-F <at)

UNI

Edge Connectivity

FREIBURG

Definition: A graph G = (V,E) is k-edge connected for an integer
k = 1if the graph Gy = (V,E \ X) is connected for every edge set

XCE |X|<k—-1.
heed o rewovg al et b ahes W Qs convedl 31‘0\('0

il i b coneciviln X (G):
Wuusn_cal ®)€® . b c)e.L% s Loeg comecled

— \(4)
@ - Q AG) =2

Goal: Compute edge connectivity A(G) of G (=)
(and edge set X of size A(G) that divides G into = 2 parts)

* minimum set X is a minimum s-t cut forsome s,t €V

— Actually for all s, t in different components of Gy = (V,E \ X)
Pkuu'\u& PNwma ¢ O(WA V\")

* Possible algorithm: fix s and find min s-t cutforallt # s— ——
Algorithm Theory, WS 2016/17 Fabian Kuhn 16

UNI

Minimum s-t Vertex-Cut

GLST aduced %%mg‘»

FREIBURG

Given: undirected graph ¢ = (V,E), nodes s, t € V

s-t vertex cut: Set)a(c Vsuchthats,t € X and sand t arein

different components of the sub-graph G[V \ X] induced by V' \ X

Size of vertex cut: | X|

—_—

Objective: find s-t vertex-cut of minimum size

* Replace undirected edge {u, v} by (u, v) and (v, u)

 Compute max s-t flow for edge capacities © and node capacities

o X'
_7@\> // \)

— L o, 2
c, = 1forv #s,t see J0 507

)

— =
* Replace eachnode v by vjy and vyt -2 o .0 %
— //7 > e

* Min edge cut corresponds to min vertex cut in G

Algorithm Theory, WS 2016/17 Fabian Kuhn 17

UNI

Vertex Connectivity

FREIBURG

Definition: A graph G = (V,E) is k-vertex connected for an integer
k = 1if the sub-graph G[V \ X] induced by V' \ X is connected for
every edge set

XCV, |X|<k-1.

V.m!ﬂlo\equ ;‘(u\ooﬂes o akscohut',' G
verlex counecBeity

war, £ b G s
L _verlex counected

Goal: Compute vertex connectivity k(G) of G
(and node set X of size k(G) that divides G into = 2 parts)

* Compute minimum s-t vertex cut for one fixed s and all t # s?

@u st pons !

Algorithm Theory, WS 2016/17 Fabian Kuhn 18

Edge-Disjoint Paths

UNI
f

FREIBURG

Given: Graph G = (V,E) withnodes s,t € I/

(_V\J
\Auw‘(.wl dir. sc wdir.

Goal: Find as many edge-disjoint s-t paths as possible

s P >t
Solution:

* Find max s-t flow in G with edge capacitiesc, = 1 foralle € E

Flow f induces |f| edge-disjoint paths:
* Integral capacities = can compute integral max flow f

* Get |f| edge-disjoint paths by greedily picking them
* Correctness follows from flow conservation f1(v) = f°ut(v)

Ho /OE ¢
Q)»/

Algorithm Theory, WS 2016/17 Fabian Kuhn 19

Vertex-Disjoint Paths

UNI
f

FREIBURG

Given: Graph G = (V,E) withnodes s,t € I/

Goal: Find as many internally vertex-disjoint s-t paths as possible
e N "
Solution: e = et

* Find max s-t flow in G with node capacitiesc, = 1 forallv eV

Flow f induces |f| vertex-disjoint paths:
* Integral capacities = can compute integral max flow f
* Get |f| vertex-disjoint paths by greedily picking them

* Correctness follows from flow conservation f1(v) = f°ut(v)

Algorithm Theory, WS 2016/17 Fabian Kuhn 20

UNI

Menger’s Theorem

FREIBURG

Theorem: (edge version)
For every graph G = (V, E) with nodes s,t € V, the size of the

minimum s-t (edge) cut equals the maximum number of pairwise
edge-disjoint paths from s to t.

4 —

— 3
S e °%

Theorem: (node version)
For every graph G = (V, E) with nodes s,t € I/, the size of the

minimum s-t vertex cut equals the maximum number of pairwise
internally vertex-disjoint paths from s to t

< >0 D
* Both versions can be seen as a special case of the max flow min
cut theorem

Algorithm Theory, WS 2016/17 Fabian Kuhn 21

Baseball Elimination

|

UNI

FREIBURG

Team

v

Wins

\]
Losses

To Play

Against = r;;

i w; ?; T; NY Balt. T. Bay
New York 81 70 11 - 2 5 2 3
Baltimore 79 77 6 2 - 2 1 1
Tampa Bay 79 75 8 5 2 - 1 1
Toronto 76 80 6 2 1 1 - 2
Boston 71 84 l 3 1 1 2 -

* Only wins/losses possible (no ties), winner: team with most wins

* Which teams can still win (as least as many wins as top team)?

* Boston is eliminated (cannot win):

— Boston can get at most 78 wins, New York already has 81 wins

* Ifforsomeli,j: w; +1; < w; 2 team i is eliminated

» Sufficient condition, but not a necessary one!

Algorithm Theory, WS 2016/17

Fabian Kuhn

Baseball Elimination

UNI

FREIBURG

Team Wins Losses To Play Against = 1;;
i w; ?; T; NY Balt. T. Bay
New York | 81 70 “»mi2| - 2 G | 2 3
Baltimore 79 77 6 2 - 2 1 1
Tampa Bay | 79 75 31 | ® 2 ; 1 1
Toronto E 80 2 2 1 1 - 2
Boston 71 84 7 3 1 1 2 -

e Can Toronto still finish first?

* Toronto can get 82 > 81 wins, but:
NY and Tampa have to play 5 more times against each other
- if NY wins two, it gets 83 wins, otherwise, Tampa has 83 wins

e Hence: Toronto cannot finish first

* How about the others? How can we solve this in general?

Algorithm Theory, WS 2016/17 Fabian Kuhn 23

Max Flow Formulation @w,*%

=

UNI

FREIBURG

e Canteam 3 finish with most wins?

CO

Remaining number
of games between
the 2 teams

CO team Number of wins team i can
game nodes have to not beat team 3

nodes

* Team 3 can finish first iff all source-game edges are saturated

Algorithm Theory, WS 2016/17 Fabian Kuhn 24

Reason for Elimination

Team Wins Losses To Play Against = 1;

i w; ?; T; NY Balt. Bost. Tor.

New York 75 59 28 - 3 8 7 3
Baltimore | |71 63 28 EN 2 7 4
~J
Boston 69 66 27 8 | 2R 0 0
\\
Toronto | |63) | 72 | (27 |)7 710 D 0
Detroit | 49 | 86 27 ‘ 3 4 0o | o)| -

N

 Detroit could finish with 49 + 27 =_7_6<wins
* Consider R = {NY, Bal, Bos, Tor}

— Have together already won w(R) = 278 games
— Must together win at least ¥(R) = 27 more games
[

: . 278+27
* On average, teamsin R win T+ = 76.25 games

%
——

Algorithm Theory, WS 2016/17 Fabian Kuhn 25

FREIBURG

Reason for Elimination of Teamé

UNI

Certificate of elimination:

BERE w® =) v 0=)

i€ER i JER

w w
#wins of H#remaining games
nodesin R among nodes in R

Team x € X is eliminated by R if
w(R) + r(R)
R|

> Wy T Ty.

Algorithm Theory, WS 2016/17 Fabian Kuhn 26

