

Chapter 6 Graph Algorithms

Algorithm Theory WS 2016/17

Fabian Kuhn

Circulations with Demands

Given: Directed network with positive edge capacities

Sources & Sinks: Instead of <u>one sources</u> and <u>one destination</u>, several sources that generate flow and several sinks that absorb flow.

Supply & Demand: sources have supply values, sinks demand values

Goal: Compute a flow such that source supplies and sink demands are exactly satisfied

The circulation problem is a feasibility rather than a maximization problem

Circulations with Demands: Formally

Given: Directed network G = (V, E) with

- Edge capacities $c_e > 0$ for all $e \in E$
- Node demands $\underline{d}_v \in \mathbb{R}$ for all $v \in V$
 - $-d_v > 0$: node needs flow and therefore is a sink
 - $-d_{v}<0$: node has a supply of $\underline{-d_{v}}$ and is therefore a source
 - $-d_v = 0$: node is neither a source nor a sink

Flow: Function $f: E \to \mathbb{R}_{\geq 0}$ satisfying

• Demand Conditions: $\forall v \in V$: $f_{\underline{in}(v)} - f_{\underline{out}(v)} = d_v$

Objective: Does a flow f satisfying all conditions exist? If yes, find such a flow f.

Example

Condition on Demands

Claim: If there exists a feasible circulation with demands d_v for

 $v \in V$, then

$$\sum_{v\in V}d_v=0.$$

$$d_{v} = f^{in}(v) - f^{out}(v)$$

•
$$\sum_{v} d_v = \sum_{v} \left(f^{\text{in}}(v) - f^{\text{out}}(v) \right) = \sum_{v} f^{\text{in}} - \sum_{v} f^{\text{in}}$$

different signs \rightarrow overall sum is 0

Total supply = total demand:

Define
$$\mathbf{D} \coloneqq \sum_{v:d_v>0} \mathbf{d}_v = \sum_{v:d_v<0} -d_v$$

Reduction to Maximum Flow

• Add "super-source" s^* and "super-sink" t^* to network

Example

Formally...

Reduction: Get graph G' from graph as follows

- Node set of G' is $V \cup \{s^*, t^*\}$
- Edge set is *E* and edges
 - $-(s^*,v)$ for all v with $d_{\underline{v}}<0$, capacity of edge is \clubsuit
 - (v,t^*) for all v with $d_v>0$, capacity of edge is d_v

Observations:

- Capacity of min s^* - t^* cut is at most \underline{D} (e.g., the cut $(s^*, V \cup \{t^*\})$
- A feasible circulation on G can be turned into a feasible flow of value D of G' by saturating all (s^*, v) and (v, t^*) edges.
- Any flow of G' of value D induces a feasible circulation on G
 - $-(s^*,v)$ and (v,t^*) edges are saturated
 - By removing these edges, we get exactly the demand constraints

Circulation with Demands

Theorem: There is a feasible circulation with demands d_v , $v \in V$ on graph G if and only if there is a flow of value D on G'.

• If all capacities and demands are integers, there is an integer circulation

The max flow min cut theorem also implies the following:

Theorem: The graph G has a feasible circulation with demands

 d_v , $v \in V$ if and only if for all cuts (A, B),

Circulation: Demands and Lower Bounds

Given: Directed network G = (V, E) with

- Edge capacities $c_e>0$ and lower bounds $0\leq\ell_e\leq c_e$ for $e\in E$
- Node demands $d_v \in \mathbb{R}$ for all $v \in V$

 - $-d_v>0$: node needs flow and therefore is a sink $-d_v<0$: node has a supply of $-d_v$ and is therefore a source $-d_v=0$: node is neither a source nor a sink

Flow: Function $f: E \to \mathbb{R}_{>0}$ satisfying

- Capacity Conditions: $\forall e \in E$: $\underline{\ell_e} \leq \underline{f(e)} \leq \underline{c_e}$
- Demand Conditions: $\forall v \in V$: $f^{in}(v) f^{out}(v) = d_v$

Objective: Does a flow f satisfying all conditions exist? If yes, find such a flow f.

Solution Idea

- Define initial circulation $\underline{f_0(e)} = \ell_e$ Satisfies capacity constraints: $\forall e \in E : \ell_e \leq f_0(e) \leq c_e$
- Define

$$\underline{\underline{L_v \coloneqq f_0^{\text{in}}(v) - f_0^{\text{out}}(v)}} = \sum_{e \text{ into } v} \ell_e - \sum_{e \text{ out of } v} \ell_e$$

• If $\underline{L}_v = d_v$, demand condition is satisfied at v by f_0 , otherwise, we need to superimpose another circulation f_1 such that

$$\underline{d'_v} \coloneqq f_1^{\text{in}}(v) - f_1^{\text{out}}(v) = \underline{d_v - L_v}$$

- Remaining capacity of edge $e: \underline{c'_e} \coloneqq c_e \ell_e$
- We get a circulation problem with new demands $\underline{d'_v}$, new capacities c'_e , and no lower bounds

Eliminating a Lower Bound: Example

Reduce to Problem Without Lower Bounds

Graph G = (V, E):

- Capacity: For each edge $e \in E$: $\ell_e \le f(e) \le c_e$
- Demand: For each node $v \in V$: $f^{in}(v) f^{out}(v) = d_v$

Model lower bounds with supplies & demands:

$$\begin{array}{ccc}
 & \ell_e \leq c_e \\
\hline
 & \text{Flow: } \ell_e
\end{array}$$

Create Network G' (without lower bounds):

- For each edge $e \in E$: $\underline{c'_e} = c_e \ell_e$
- For each node $v \in V$: $d'_v = d_v L_v$

$$L_{v} = f_{o}^{in}(v) - f_{o}(v)$$

Circulation: Demands and Lower Bounds

Theorem: There is a feasible circulation in G (with lower bounds) if and only if there is feasible circulation in G' (without lower bounds).

- Given circulation f' in G', $f(e) = f'(e) + \ell_e$ is circulation in G'
 - The capacity constraints are satisfied because $f'(e) \le c_e \ell_e$
 - Demand conditions:

$$f^{\text{in}}(v) - f^{\text{out}}(v) = \sum_{e \text{ into } v} \left(\ell_e + f'(e) \right) - \sum_{e \text{ out of } v} \left(\ell_e + f'(e) \right)$$
$$= L_v + (d_v - L_v) = d_v$$

- Given circulation f in G, $f'(e) = f(e) \ell_e$ is circulation in G'
 - The capacity constraints are satisfied because $\ell_e \leq f(e) \leq c_e$
 - Demand conditions:

$$f'^{\text{in}}(v) - f'^{\text{out}}(v) = \sum_{e \text{ into } v} (f(e) - \ell_e) - \sum_{e \text{ out of } v} (f(e) - \ell_e)$$
$$= d_v - L_v$$

Integrality

Theorem: Consider a circulation problem with integral capacities, flow lower bounds, and node demands. If the problem is feasible, then it also has an integral solution.

Proof:

- Graph G' has only integral capacities and demands
- Thus, the flow network used in the reduction to solve circulation with demands and no lower bounds has only integral capacities
- The theorem now follows because a max flow problem with integral capacities also has an optimal integral solution
- It also follows that with the max flow algorithms we studied,
 we get an integral feasible circulation solution.

Matrix Rounding

- Given: $p \times q$ matrix $D = \{d_{i,j}\}$ of real numbers
- row i sum: $a_i = \sum_j d_{i,j}$, $\overline{\text{column }} j$ sum: $b_j = \sum_i d_{i,j}$
- Goal: Round each $d_{i,j}$, as well as a_i and b_j up or down to the next integer so that the sum of rounded elements in each row (column) equals the rounded row (column) sum
- Original application: publishing census data

X . ..

Example:

3.14	6.80	7.30	17.24
9.60	2.40	0.70	12.70
3.60	1.20	6.50	11.30
16.34	10.40	14.50	

3	7	7	17
10	2	1	13
3	1	7	11
16	10	15	

original data

possible rounding

Matrix Rounding

Theorem: For any matrix, there exists a feasible rounding.

Remark: Just rounding to the nearest integer doesn't work

0.35	0.35	0.35	1.05
0.55	0.55	0.55	1.65
0.90	0.90	0.90	

original data

0	0	0	
1	1	1	3
1	1	1	

rounding to nearest integer

0	0	1	1
1	1	OJ	2
1	1	1	

feasible rounding

Reduction to Circulation

3.14	6.80	7.30	17.24
9.60	2.40	0.70	12.70
3.60	1.20	6.50	11.30
16.34	10.40	14.50	

Matrix elements and row/column sums give a feasible circulation that satisfies all lower bound, capacity, and demand constraints

rows:

columns:

all demands $d_v = 0$

Matrix Rounding

Theorem: For any matrix, there exists a feasible rounding.

Proof:

- The matrix entries $d_{i,j}$ and the row and column sums a_i and b_j give a feasible circulation for the constructed network
- Every feasible circulation gives matrix entries with corresponding row and column sums (follows from demand constraints)
- Because all demands, capacities, and flow lower bounds are integral, there is an integral solution to the circulation problem
 - → gives a feasible rounding!

Gifts-Children Graph

• Which child likes which gift can be represented by a graph

Matching

Matching: Set of pairwise non-incident edges

Maximal Matching: A matching s.t. no more edges can be added

Maximum Matching: A matching of maximum possible size

Perfect Matching: Matching of size n/2 (every node is matched)

Bipartite Graph

Definition: A graph G = (V, E) is called bipartite iff its node set can be partitioned into two parts $V = V_1 \cup V_2$ such that for each edge $\{u, v\} \in E$,

$$|\{u,v\}\cap V_1|=1.$$

Thus, edges are only between the two parts

Santa's Problem

Maximum Matching in Bipartite Graphs:

Every child can get a gift iff there is a matching of size #children

Clearly, every matching is at most as big

If #children = #gifts, there is a solution iff there is a perfect matching

Reducing to Maximum Flow

Like edge-disjoint paths...

all capacities are 1

Reducing to Maximum Flow

Theorem: Every integer solution to the max flow problem on the constructed graph induces a maximum bipartite matching of G.

Proof:

- 1. An integer flow f of value |f| induces a matching of size |f|
 - Left nodes (gifts) have incoming capacity 1
 - Right nodes (children) have outgoing capacity 1
 - Left and right nodes are incident to ≤ 1 edge e of G with f(e) = 1
- 2. A matching of size k implies a flow f of value |f| = k
 - For each edge $\{u, v\}$ of the matching:

$$f((s,u)) = f((u,v)) = f((v,t)) = 1$$

All other flow values are 0

Running Time of Max. Bipartite Matching

Theorem: A maximum matching of a bipartite graph can be computed in time $O(m \cdot n)$.

Est Pulkason:

each augun. improves matching site by

puth

Site of maximum mathing is < 1/2

(ost of finding I augun. path: O(m)

Perfect Matching?

- There can only be a perfect matching if both sides of the partition have size n/2.
- There is no perfect matching, iff there is an s-t cut of size < n/2 in the flow network.

s-t Cuts

Partition (A, B) of node set such that $s \in A$ and $t \in B$

- If $v_i \in A$: edge (v_i, t) is in cut (A, B)
- If $u_i \in B$: edge (s, u_i) is in cut (A, B)
- Otherwise (if $u_i \in A$, $v_i \in B$), all edges from u_i to some $v_j \in B$ are in cut (A, B)

Hall's Marriage Theorem

Theorem: A bipartite graph $G = (U \cup V, E)$ for which |U| = |V| has a perfect matching if and only if

$$\forall \underline{U}' \subseteq \underline{U}: |N(\underline{U}')| \geq |\underline{U}'|,$$

where $N(U') \subseteq V$ is the set of neighbors of nodes in U'.

Proof: No perfect matching \Leftrightarrow some s-t cut has capacity < n/2

1. Assume there is U' for which $|N(U')| \leq |U'|$:

Hall's Marriage Theorem

Theorem: A bipartite graph $G = (U \cup V, E)$ for which |U| = |V| has a perfect matching if and only if

$$\forall \underline{U}' \subseteq \underline{U}: |\underline{N}(\underline{U}')| \geq |\underline{U}'|,$$

where $N(U') \subseteq V$ is the set of neighbors of nodes in U'.

Proof: No perfect matching \Leftrightarrow some s-t cut has capacity < n/2

2. Assume that there is a cut (A, B) of capacity $\leq n/2$

Hall's Marriage Theorem

Theorem: A bipartite graph $G = (U \cup V, E)$ for which |U| = |V| has a perfect matching if and only if

$$\forall \mathbf{U}' \subseteq \mathbf{U} : |\mathbf{N}(\mathbf{U}')| \ge |\mathbf{U}'|,$$

where $N(U') \subseteq V$ is the set of neighbors of nodes in U'.

Proof: No perfect matching \Leftrightarrow some s-t cut has capacity < n/2

2. Assume that there is a cut (A, B) of capacity < n/2

$$|U'| = \frac{n}{2} - x$$

$$|N(U')| < |U'|$$

$$|X + y + z| < \frac{n}{2}$$

$$|N(U')| < |U'|$$

$$|X + y + z| < \frac{n}{2}$$

$$|N(U')| < |U'|$$