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Circulations with Demands

Given: Directed network with positive edge capacities

Sources & Sinks: Instead of one source and one destination, several 
sources that generate flow and several sinks that absorb flow.

Supply & Demand: sources have supply values, sinks demand values

Goal: Compute a flow such that source supplies and sink demands 
are exactly satisfied

• The circulation problem is a feasibility rather than a maximization 
problem
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Circulations with Demands: Formally

Given: Directed network 𝐺 = 𝑉, 𝐸 with

• Edge capacities 𝑐𝑒 > 0 for all 𝑒 ∈ 𝐸

• Node demands 𝑑𝑣 ∈ ℝ for all 𝑣 ∈ 𝑉
– 𝑑𝑣 > 0: node needs flow and therefore is a sink

– 𝑑𝑣 < 0: node has a supply of −𝑑𝑣 and is therefore a source

– 𝑑𝑣 = 0: node is neither a source nor a sink

Flow: Function 𝑓: 𝐸 → ℝ≥0 satisfying

• Capacity Conditions: ∀𝑒 ∈ 𝐸: 0 ≤ 𝑓 𝑒 ≤ 𝑐𝑒

• Demand Conditions: ∀𝑣 ∈ 𝑉: 𝑓in 𝑣 − 𝑓out 𝑣 = 𝑑𝑣

Objective: Does a flow 𝑓 satisfying all conditions exist?
If yes, find such a flow 𝑓.
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Condition on Demands

Claim: If there exists a feasible circulation with demands 𝑑𝑣 for 
𝑣 ∈ 𝑉, then

෍

𝑣∈𝑉

𝑑𝑣 = 0.

Proof:

• σ𝑣 𝑑𝑣 = σ𝑣 𝑓in 𝑣 − 𝑓out 𝑣

• 𝑓(𝑒) of each edge 𝑒 appears twice in the above sum with 
different signs  overall sum is 0

Total supply = total demand:

Define 𝑫 ≔ ෍

𝒗:𝒅𝒗>𝟎

𝒅𝒗 = ෍

𝒗:𝒅𝒗<𝟎

−𝒅𝒗
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Reduction to Maximum Flow

• Add “super-source” 𝑠∗ and “super-sink” 𝑡∗ to network
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Example

-3 2

-3

4

3 3

2

2 2

1 2

22

2

𝒔∗

𝒕∗

3

3

2

4

3

3

2

4



Algorithm Theory, WS 2016/17 Fabian Kuhn 8

Formally…

Reduction: Get graph 𝐺′ from graph as follows

• Node set of 𝐺′ is 𝑉 ∪ 𝑠∗, 𝑡∗

• Edge set is 𝐸 and edges
– (𝑠∗, 𝑣) for all 𝑣 with 𝑑𝑣 < 0, capacity of edge is 𝑑𝑣
– (𝑣, 𝑡∗) for all 𝑣 with 𝑑𝑣 > 0, capacity of edge is 𝑑𝑣

Observations:

• Capacity of min 𝑠∗-𝑡∗ cut is at most 𝐷 (e.g., the cut 𝑠∗, 𝑉 ∪ {𝑡∗ )

• A feasible circulation on 𝐺 can be turned into a feasible flow of 
value 𝐷 of 𝐺′ by saturating all (𝑠∗, 𝑣) and (𝑣, 𝑡∗) edges.

• Any flow of 𝐺′ of value 𝐷 induces a feasible circulation on 𝐺
– 𝑠∗, 𝑣 and 𝑣, 𝑡∗ edges are saturated

– By removing these edges, we get exactly the demand constraints
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Circulation with Demands

Theorem: There is a feasible circulation with demands 𝑑𝑣, 𝑣 ∈ 𝑉
on graph 𝐺 if and only if there is a flow of value 𝐷 on 𝐺′.

• If all capacities and demands are integers, there is an integer 
circulation

The max flow min cut theorem also implies the following:

Theorem: The graph 𝐺 has a feasible circulation with demands 
𝑑𝑣, 𝑣 ∈ 𝑉 if and only if for all cuts (𝐴, 𝐵),

෍

𝑣∈𝐵

𝑑𝑣 ≤ 𝑐(𝐴, 𝐵) .
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Circulation: Demands and Lower Bounds

Given: Directed network 𝐺 = 𝑉, 𝐸 with

• Edge capacities 𝑐𝑒 > 0 and lower bounds 𝟎 ≤ ℓ𝒆 ≤ 𝒄𝒆 for 𝒆 ∈ 𝑬

• Node demands 𝑑𝑣 ∈ ℝ for all 𝑣 ∈ 𝑉
– 𝑑𝑣 > 0: node needs flow and therefore is a sink

– 𝑑𝑣 < 0: node has a supply of −𝑑𝑣 and is therefore a source

– 𝑑𝑣 = 0: node is neither a source nor a sink

Flow: Function 𝑓: 𝐸 → ℝ≥0 satisfying

• Capacity Conditions: ∀𝑒 ∈ 𝐸: ℓ𝒆 ≤ 𝒇 𝒆 ≤ 𝒄𝒆

• Demand Conditions: ∀𝑣 ∈ 𝑉: 𝑓in 𝑣 − 𝑓out 𝑣 = 𝑑𝑣

Objective: Does a flow 𝑓 satisfying all conditions exist?
If yes, find such a flow 𝑓.
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Solution Idea

• Define initial circulation 𝑓0 𝑒 = ℓ𝑒
Satisfies capacity constraints: ∀𝑒 ∈ 𝐸: ℓ𝑒 ≤ 𝑓0 𝑒 ≤ 𝑐𝑒

• Define

𝐿𝑣 ≔ 𝑓0
in 𝑣 − 𝑓0

out 𝑣 = ෍

𝑒 into 𝑣

ℓ𝑒 − ෍

𝑒 out of 𝑣

ℓ𝑒

• If 𝐿𝑣 = 𝑑𝑣, demand condition is satisfied at 𝑣 by 𝑓0, otherwise, 
we need to superimpose another circulation 𝑓1 such that

𝑑𝑣
′ ≔ 𝑓1

in 𝑣 − 𝑓1
out 𝑣 = 𝑑𝑣 − 𝐿𝑣

• Remaining capacity of edge 𝑒: 𝑐𝑒
′ ≔ 𝑐𝑒 − ℓ𝑒

• We get a circulation problem with new demands 𝑑𝑣
′ , new 

capacities 𝑐𝑒
′ , and no lower bounds
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Eliminating a Lower Bound: Example
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Reduce to Problem Without Lower Bounds

Graph 𝑮 = (𝑽, 𝑬):

• Capacity: For each edge 𝑒 ∈ 𝐸: ℓ𝑒 ≤ 𝑓 𝑒 ≤ 𝑐𝑒

• Demand: For each node 𝑣 ∈ 𝑉: 𝑓in 𝑣 − 𝑓out 𝑣 = 𝑑𝑣

Model lower bounds with supplies & demands:

Create Network 𝑮′ (without lower bounds):

• For each edge 𝑒 ∈ 𝐸: 𝑐𝑒
′ = 𝑐𝑒 − ℓ𝑒

• For each node 𝑣 ∈ 𝑉: 𝑑𝑣
′ = 𝑑𝑣 − 𝐿𝑣

𝑢 𝑣
ℓ𝒆 ≤ 𝒄𝒆

Flow: ℓ𝒆



Algorithm Theory, WS 2016/17 Fabian Kuhn 14

Circulation: Demands and Lower Bounds

Theorem: There is a feasible circulation in 𝐺 (with lower bounds) if 
and only if there is feasible circulation in 𝐺′ (without lower bounds).

• Given circulation 𝑓′ in 𝐺′, 𝑓 𝑒 = 𝑓′ 𝑒 + ℓ𝑒 is circulation in 𝐺
– The capacity constraints are satisfied because 𝑓′ 𝑒 ≤ 𝑐𝑒 − ℓ𝑒
– Demand conditions:

𝑓in 𝑣 − 𝑓out 𝑣 = ෍

𝑒 into 𝑣

ℓ𝑒 + 𝑓′ 𝑒 − ෍

𝑒 out of 𝑣

ℓ𝑒 + 𝑓′ 𝑒

= 𝐿𝑣 + 𝑑𝑣 − 𝐿𝑣 = 𝑑𝑣

• Given circulation 𝑓 in 𝐺, 𝑓′(𝑒) = 𝑓 𝑒 − ℓ𝑒 is circulation in 𝐺′
– The capacity constraints are satisfied because ℓ𝑒 ≤ 𝑓 𝑒 ≤ 𝑐𝑒
– Demand conditions:

𝑓′in 𝑣 − 𝑓′out 𝑣 = ෍

𝑒 into 𝑣

𝑓 𝑒 − ℓ𝑒 − ෍

𝑒 out of 𝑣

𝑓 𝑒 − ℓ𝑒

= 𝑑𝑣 − 𝐿𝑣
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Integrality

Theorem: Consider a circulation problem with integral capacities, 
flow lower bounds, and node demands. If the problem is feasible, 
then it also has an integral solution.

Proof:

• Graph 𝐺′ has only integral capacities and demands

• Thus, the flow network used in the reduction to solve 
circulation with demands and no lower bounds has only 
integral capacities

• The theorem now follows because a max flow problem with 
integral capacities also has an optimal integral solution

• It also follows that with the max flow algorithms we studied, 
we get an integral feasible circulation solution.
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Matrix Rounding

• Given: 𝑝 × 𝑞 matrix 𝐷 = {𝑑𝑖,𝑗} of real numbers

• row 𝒊 sum: 𝑎𝑖 = σ𝑗 𝑑𝑖,𝑗,     column 𝒋 sum: 𝑏𝑗 = σ𝑖 𝑑𝑖,𝑗

• Goal: Round each 𝑑𝑖,𝑗, as well as 𝑎𝑖 and 𝑏𝑗 up or down to the 

next integer so that the sum of rounded elements in each row 
(column) equals the rounded row (column) sum

• Original application: publishing census data

Example:

3.14 6.80 7.30 17.24

9.60 2.40 0.70 12.70

3.60 1.20 6.50 11.30

16.34 10.40 14.50

3 7 7 17

10 2 1 13

3 1 7 11

16 10 15

original data possible rounding
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Matrix Rounding

Theorem: For any matrix, there exists a feasible rounding. 

Remark: Just rounding to the nearest integer doesn’t work

0.35 0.35 0.35 1.05

0.55 0.55 0.55 1.65

0.90 0.90 0.90

0 0 0 0

1 1 1 3

1 1 1

0 0 1 1

1 1 0 2

1 1 1

original data

feasible roundingrounding to nearest integer
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Reduction to Circulation

3.14 6.80 7.30 17.24

9.60 2.40 0.70 12.70

3.60 1.20 6.50 11.30

16.34 10.40 14.50

𝒓𝟏

𝒓𝟐

rows:

𝒓𝟑

𝒄𝟏

𝒄𝟐

𝒄𝟑

columns:

3,4

2,3𝑠 𝑡12,13 10,11

∞

Matrix elements and row/column sums
give a feasible circulation that satisfies
all lower bound, capacity, and demand
constraints

all demands 𝑑𝑣 = 0
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Matrix Rounding

Theorem: For any matrix, there exists a feasible rounding.

Proof:

• The matrix entries 𝑑𝑖,𝑗 and the row and column sums 𝑎𝑖 and 𝑏𝑗
give a feasible circulation for the constructed network

• Every feasible circulation gives matrix entries with corresponding 
row and column sums (follows from demand constraints)

• Because all demands, capacities, and flow lower bounds are 
integral, there is an integral solution to the circulation problem

 gives a feasible rounding!
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Matching
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Gifts-Children Graph

• Which child likes which gift can be represented by a graph
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Matching

Matching: Set of pairwise non-incident edges

Maximal Matching: A matching s.t. no more edges can be added

Maximum Matching: A matching of maximum possible size

Perfect Matching: Matching of size Τ𝑛 2 (every node is matched)
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Bipartite Graph

Definition: A graph 𝐺 = 𝑉, 𝐸 is called bipartite iff its node set 
can be partitioned into two parts 𝑉 = 𝑉1 ∪ 𝑉2 such that for each 
edge u, v ∈ 𝐸,

𝑢, 𝑣 ∩ 𝑉1 = 1.

• Thus, edges are only between the two parts

⋅

𝑉1 𝑉2
𝐸
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Santa’s Problem

Maximum Matching in Bipartite Graphs:

Every child can get a gift
iff there is a matching
of size #children

Clearly, every matching
is at most as big

If #children = #gifts,
there is a solution iff
there is a perfect matching
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Reducing to Maximum Flow

• Like edge-disjoint paths…

all capacities are 𝟏

𝒔 𝒕



Algorithm Theory, WS 2016/17 Fabian Kuhn 26

Reducing to Maximum Flow

Theorem: Every integer solution to the max flow problem on the 
constructed graph induces a maximum bipartite matching of 𝐺.

Proof:

1. An integer flow 𝑓 of value |𝑓| induces a matching of size |𝑓|
– Left nodes (gifts) have incoming capacity 1

– Right nodes (children) have outgoing capacity 1

– Left and right nodes are incident to ≤ 1 edge 𝑒 of 𝐺 with 𝑓 𝑒 = 1

2. A matching of size 𝑘 implies a flow 𝑓 of value 𝑓 = 𝑘
– For each edge {𝑢, 𝑣} of the matching:

𝑓 𝑠, 𝑢 = 𝑓 𝑢, 𝑣 = 𝑓 𝑣, 𝑡 = 1

– All other flow values are 0
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Running Time of Max. Bipartite Matching

Theorem: A maximum matching of a bipartite graph can be 
computed in time 𝑂(𝑚 ⋅ 𝑛). 
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Perfect Matching?

• There can only be a perfect matching if both sides of the 
partition have size Τ𝑛 2.

• There is no perfect matching, iff there is an 𝑠-𝑡 cut of
size < Τ𝑛 2 in the flow network.

ൗ𝑛 2 ൗ𝑛 2

𝑡𝑠



Algorithm Theory, WS 2016/17 Fabian Kuhn 29

𝑠-𝑡 Cuts

Partition (𝐴, 𝐵) of node set such that 𝑠 ∈ 𝐴 and 𝑡 ∈ 𝐵

• If 𝑣𝑖 ∈ 𝐴: edge (𝑣𝑖 , 𝑡) is in cut (𝐴, 𝐵)

• If 𝑢𝑖 ∈ 𝐵: edge (𝑠, 𝑢𝑖) is in cut (𝐴, 𝐵)

• Otherwise (if 𝑢𝑖 ∈ 𝐴, 𝑣𝑖 ∈ 𝐵), all edges from 𝑢𝑖 to some 𝑣𝑗 ∈

𝐵 are in cut (𝐴, 𝐵)

𝑢1

𝑢2

𝑢3

𝑢4

𝑢5

𝑢6

𝑣1

𝑣2

𝑣3

𝑣4

𝑣5

𝑣6

𝑈 𝑉

𝑡𝑠



Algorithm Theory, WS 2016/17 Fabian Kuhn 30

Hall’s Marriage Theorem

Theorem: A bipartite graph 𝐺 = (𝑈 ∪ 𝑉, 𝐸) for which 𝑈 = |𝑉|
has a perfect matching if and only if

∀𝑼′ ⊆ 𝑼: 𝑵 𝑼′ ≥ 𝑼′ ,
where 𝑁 𝑈′ ⊆ 𝑉 is the set of neighbors of nodes in 𝑈′.

Proof:  No perfect matching ⟺ some 𝑠-𝑡 cut has capacity < Τ𝑛 2

1. Assume there is 𝑈′ for which 𝑁 𝑈′ < |U′|:

𝑡𝑠

𝑼′ 𝑵(𝑼′)
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Hall’s Marriage Theorem

Theorem: A bipartite graph 𝐺 = (𝑈 ∪ 𝑉, 𝐸) for which 𝑈 = |𝑉|
has a perfect matching if and only if

∀𝑼′ ⊆ 𝑼: 𝑵 𝑼′ ≥ 𝑼′ ,
where 𝑁 𝑈′ ⊆ 𝑉 is the set of neighbors of nodes in 𝑈′.

Proof:  No perfect matching ⟺ some 𝑠-𝑡 cut has capacity < Τ𝑛 2

2. Assume that there is a cut (𝐴, 𝐵) of capacity < Τ𝑛 2

𝑡𝑠

𝑼′

𝒙

𝒚
𝒛

𝒙 + 𝒚 + 𝒛 <
𝒏

𝟐

|𝑵 𝑼′ | ≤ 𝒚 + 𝒛

𝑼′ =
𝒏

𝟐
− 𝒙
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Hall’s Marriage Theorem

Theorem: A bipartite graph 𝐺 = (𝑈 ∪ 𝑉, 𝐸) for which 𝑈 = |𝑉|
has a perfect matching if and only if

∀𝑼′ ⊆ 𝑼: 𝑵 𝑼′ ≥ 𝑼′ ,
where 𝑁 𝑈′ ⊆ 𝑉 is the set of neighbors of nodes in 𝑈′.

Proof:  No perfect matching ⟺ some 𝑠-𝑡 cut has capacity < 𝑛/2

2. Assume that there is a cut (𝐴, 𝐵) of capacity < 𝑛/2

𝒙 + 𝒚 + 𝒛 <
𝒏

𝟐

|𝑵 𝑼′ | ≤ 𝒚 + 𝒛

𝑼′ =
𝒏

𝟐
− 𝒙


