Chapter 6
Graph Algorithms

Algorithm Theory
WS 2016/17

Fabian Kuhn

UNI

FREIBURG

Matching

UNI
f

FREIBURG

Matching: Set of pairwise non-incident edges

Maximal Matching: A matching s.t. no more edges can be added

Brl\llaximum Matching; A matching of maximum possible size

Perfect Matching: Matching of size */, (every node is matched)

Algorithm Theory, WS 2016/17 Fabian Kuhn 2

UNI
FREIBURG

Bipartite Graph

Definition: A graph G = (V/, E) is called bipartite iff its node set
can be partitioned into two parts IV = V; U V, such that for each
edge {u,v} € E,

Hu,v}n V| =1.

* Thus, edges are only between the two parts

o\\, .
E /
v, v,

Algorithm Theory, WS 2016/17 Fabian Kuhn

/\

Hall’'s Marriage Theorem

UNI
FREIBURG

Theorem: A bipartite graph G = (U U V, E) for which |U| = |V|
has a perfect matching if and only if

vU' c U:|N(U")| = |U'|,
where N(U") € V is the set of neighbors of nodes in U'.

Proof: No perfect matching & some s-t cut has capacity < n/2
1. Assume there is U’ for which [N(U")| < |U’|:

U’) o N(U"

Algorithm Theory, WS 2016/17 Fabian Kuhn 4

What About General Graphs

UNI
FREIBURG

Can we efficiently compute a maximum matching if G is not
bipartite?

How good is a maximal matching?

— A matching that cannot be extended...

Vertex Covgr: set S € V of nodes such that
v{u,v} € E, fuvins #0.

<o

A vertex cover covers all edges by incident nodes

Algorithm Theory, WS 2016/17 Fabian Kuhn 5

UNI

Vertex Cover vs Matching

FREIBURG

Consider a matching M and a vertex cover S
I

Claim: |[M| < |S] ? \ — \

Proof:

* At least one node of every edge {u,v} € Misin S
* Needs to be a different node for different edges from M

Algorithm Theory, WS 2016/17 Fabian Kuhn 6

UNI

Vertex Cover vs Matching

FREIBURG

l
\/el

G

/\

Consider a matching M and a vertex cover S

Claim: If M _is maximal and S is minimum, |S]| < 2|M|

Proof:

M is maximal: for every edge {u, v} € E, eitheru or v (or both)
are matched

 Every edge e € E is “covered” by at least one matching edge

* Thus, the set of the nodes of all matching edges gives a vertex
cover S of size |S| = 2|M].

Algorithm Theory, WS 2016/17 Fabian Kuhn 7

Maximal Matching Approximation

UNI
f

FREIBURG

Theorem: For any maximal matching M and any maximum matching
M*, it holds that

M*
IMlzu.
2

~E—

Proof:
gt . QQJ . VQS‘QX oy

IM* € \ST) s 21IM)

Theorem: The set of all matched nodes of a maximal matching M is
a vertex cover of size at most twice the size of a min. vertex cover.

Algorithm Theory, WS 2016/17 Fabian Kuhn 8

|
FREIBURG

Augmenting Paths = Ei=

./

Consider a matching M of a graph ¢ = (V,E):
* Anodev €V iscalled free iff it is not matched

E—————
——

Augmenting Path: A (odd-length) path that starts and ends at a free
node and visits edges in E \ M and edges in M alternatingly.

free nodes

* Matching M can be improved using an augmenting path by
switching the role of each edge along the path

Algorithm Theory, WS 2016/17 Fabian Kuhn 9

UNI

Augmenting Paths

FREIBURG

Theorem: A matching M of G = (V, E) is maximum if and only if
there is no augmenting path. XN @ o U
Proof: —F > NS N

* Consider non-max. matchingi\‘/l and max. matching M* and define
F:=M\ M, F*:=M"\M

* Notethat FNF*=@and |F| < |F*|
 Each node v € V is incident to at most one edge in both F and Ii*

« F U F~”induces even cycles and paths

Cauuod‘ QX(\SQ‘
—o———0

—~ :] duaw. ‘7«‘“\ ({N M

\ -
Now-w waeld. . . \
L au%mW L RXA ‘é

Algorithm Theory, WS 2016/17 Fabian Kuhn 10

|
FREIBURG

Finding Augmenting Paths

free nodes

\

Q)AIM

@
Z ’

Wl’/ augmentingpath
) - 7
{ >

>

odd cycle

Algorithm Theory, WS 2016/17 Fabian Kuhn 11

Blossoms

UNI
FREIBURG

* If we find an odd cycle...

free node () f
Graph G %
D
Matching M >3
t contract N ,
blossom
.contracted blossom

TN

- Graph G’

Matching M’ = M \ {e, e’}
is a matchﬁg of G'.

blossom
Algorithm Theory, WS 2016/17 Fabian Kuhn 12

Contracting Blossoms

UNI
f

FREIBURG

Lemma: Graph G has an augmenting path w.r.t. matching M iff G’
has an augmenting path w.r.t. matching M’

i

{

(<

Note: If stem has length 0,
root v of blossom is free
and thus also the node v’
is free in G'.

Also: The matching M can be computed efficiently from M'.

Algorithm Theory, WS 2016/17 Fabian Kuhn 13

UNI

Edmond’s Blossom Algorithm

FREIBURG

Algorithm Sketch:
1. Build a tree for each free node

2. Starting from an explored node u at even distance from a free
node f in the tree of f, explore some unexplored edge {u, v}:

1. Ifvisanunexplored node, v is matched to some neighbor w:
add w to the tree (w is now explored)

2. Ifvisexplored and in the same tree:
at odd distance from root - ignore and move on
at even distance from root = blossom found —= Swller %"féw

3. Ifvisexplored andin another tree
at odd distance from root - ignore and move on
at even distance from root 2 augmenting path found

Algorithm Theory, WS 2016/17 Fabian Kuhn 14

Running Time

Finding a Blossom: Repeat on smaller graph
Finding an Augmenting Path: Improve matching

Theorem: The algorithm can be implemented in time O (imn?).
Dw‘/)L QK;)'DM‘\';M ‘\D @'NQ Qu%w. (M-"& /uoxdua

Cau conduact e«(.a Ou) blessous wub(we c%J G augm ‘o«—fe
Q'l‘ luQSl ‘% auxu. Vﬂ"e\g

Algorithm Theory, WS 2016/17 Fabian Kuhn

UNI
f

FREIBURG

Maximum Weight Bipartite Matching

UNI
f

FREIBURG

* Let’s again go back to bipartite graphs...

Given: Bipartite graph ¢ = (U Ul/, E) with edge weights c, = 0
Goal: Find a matching M of maximum total weight

C, = 0

Algorithm Theory, WS 2016/17 Fabian Kuhn

16

UNI

Minimum Weight Perfect Matching

FREIBURG

Claim: Max weight bipartite matching is equivalent to finding a
minimum weight perfect matching in a complete bipartite graph.

1. Turninto maximum weight perfect matching
. add dummy nodes to get two equal-sized sides
. add edges of weight 0 to make graph complete bipartite

2. Replace weights: ¢, = m}gx{cf} — Ce

{
\

(
{

!‘\
;
5\4
\
/

M 3
\T
N
W
9
A

<)

{
\
X
\

‘@
\
)

\

Algorithm Theory, WS 2016/17 Fabian Kuhn 17

As an Integer Linear Program “(—()

UNI

FREIBURG

* We can formulate the problem as an integer linear program

—

Var. x,,,, for every edge (u,v) € U X V to encode matching M:

v = 1, if{fu,v} eM
"o, if {u,v} ¢ M

Minimum Weight Perfect Matching

“A‘“A E C“’v o x“\l u .\Z
uv€UrV \
v“éui ixw = |
veV
\'/vévf 2 Xo =)
ue L

\Y["/": Xuy € 10, l%

Algorithm Theory, WS 2016/17 Fabian Kuhn

18

Linear Programming (LP) Relaxation

UNI
f

FREIBURG

Linear Program (LP)

* Continuous optimization problem on multiple variables with a
linear objective function and a set of linear side constraints

LP Relaxation of Minimum Weight Perfect Matching
* Weight ¢, & variable x,,,, for ever edge (u,v) € U XV

min z Cup * Xyp -L_’\D* < g*

(u,v)EUXV
S. t.
Yu € U: quv =1,
VeV
Vv eV: Z Xyp = 1
ueu

Yu e U,Vv € V:
-

Algorithm Theory, WS 2016/17 Fabian Kuhn 19

UNI

Dual Problem 0 B AN,

* Every linear program has a dual linear program
— The dual of a minimization problem is a maximization problem
— Strong duality: primal LP and dual LP have the same objective value

In the case of the minimum weight perfect matching problem

* Assignavariable a, = 0toeachnodeu € U

and a variable b, = 0toeachnodev €V
* Condition: for every edge (u,v) € U X V: (ay + by, < cyy)
* Given perfect matching M: M
e =
th au. +L\,' €<,
), w2 at)b XL
(u, v)EM ueu VEV (

pa ———

Algorithm Theory, WS 2016/17 Fabian Kuhn 20

FREIBURG

Dual Linear Program

UNI

FREIBURG

* Variablesa, = 0foru € Uand b, =2 0forv eV

maxz au+2bv

ueu vev
S.t.

VueU,VveV: ay,

+b, <

Cuv

* For every perfect matching M:

Z cuv_z:au+2b

(u,v)EM _ Uuevu

vev

Algorithm Theory, WS 2016/17 Fabian Kuhn

21

Complementary Slackness

UNI

FREIBURG

* A perfect matching M is optimal if

z Cquzau+va

(u,v)eEM ueu VEV

* Inthat case, for every (u,v) € M

Wyy = Cyp — Ay — by, =0
= — — J
— gln this case, M is also an optimal solution to the LP relaxation of the
problem

— Every optimal LP solution can be characterized by such a property,
which is then generally referred to as complementary slackness
_——,

* Goal: Find a dual solution a,;, b, and a perfect matching such
that the complementary slackness condition is satisfied!
— i.e., for every matching edge (u, v), we want w,,, = 0

— We then know that the matching is optimal!

Algorithm Theory, WS 2016/17 Fabian Kuhn

22

UNI

Algorithm Overview

FREIBURG

Start with any feasible dual solution(a,, b,)

— i.e., solution satisfies that for all (u, v): ¢y, = a, + b,

Let Ey be the edges for which w,,, = 0

— Recall that wy, = ¢y, — a, — by,

—_—

* Compute maximum cardinality matching M of E|,

All edges (u, v) of M satisfy w,,, = 0

— Complementary slackness if satisfied

— If M is a perfect matching, we are done

If M is not a perfect matching, dual solution can be improved

Algorithm Theory, WS 2016/17 Fabian Kuhn 23

Marked Nodes

|
FRE:BURG

UNI

Define set of marked nodes L:

e Set of nodes which can be reached on alternating paths on
edges in E, starting from unmatched nodes in U

O

edges E, withw,, = 0

optimal matching M

Ly: unmatched nodes in U

L: all nodes that can be reached
on alternating paths starting
from L,

Algorithm Theory, WS 2016/17 Fabian Kuhn 24

Marked Nodes

UNI

Define set of marked nodes L:

e Set of nodes which can be reached on alternating paths on
edges in E, starting from unmatched nodes in U

O

edges E, withw,, = 0

optimal matching M

Ly: unmatched nodes in U

L: all nodes that can be reached
%' on alternating paths starting
from L,

O
O

Algorithm Theory, WS 2016/17 Fabian Kuhn 25

FREIBURG

