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Vertex Cover vs Matching
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Consider a matching M and a vertex cover S

s L He cparls - \M*\ :’gﬂ
Claim: [M| < |S| e bporiie sor
Proof:
* At least one node of every edge {u,v} € Misin S

* Needs to be a different node for different edges from M

Algorithm Theory, WS 2016/17 Fabian Kuhn



UNI

Augmenting Paths
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Consider a matching M of a graph ¢ = (V,E):
* Anodev €V iscalled free iff it is not matched

Augmenting Path: A (odd-length) path that starts and ends at a free
node and visits edges in E \ M and edges in M alternatingly.

free nodes

* Matching M can be improved using an augmenting path by
switching the role of each edge along the path
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Maximum Weight Bipartite Matching
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* Let’s again go back to bipartite graphs...

Given: Bipartite graph G = (U U V, E) with edge weights c, = 0
Goal: Find a matching M of maximum total weight

C, = 0
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Minimum Weight Perfect Matching
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Claim: Max weight bipartite matching is equivalent to finding a
minimum weight perfect matching in a complete bipartite graph.

1. Turninto maximum weight perfect matching

. add dummy nodes to get two equal-sized sides
. add edges of weight 0 to make graph complete bipartite

2. Replace weights: ¢, = m}gx{cf} — Ce
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As an Integer Linear Program
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* We can formulate the problem as an integer linear program

Var. x,,,, for every edge (u,v) € U X V to encode matching M:

1, if {uv}eM
0, if{fu,vi¢ M

Xuvy —
— 3

Minimum Weight Perfect Matching

i min z Cuv * Xyv “ e\é

(u,v)eUxXV
S. L.
‘Vﬂfe—u:z:xuvzl, Vv EV: Exuvzl
vey UEU
vueU,VvveV: x,, €{0,1}
= E —
)(\wz' O
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Dual Problem
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* Every linear program has a dual linear program
— The dual of a minimization problem is a maximization problem
— Strong duality: primal LP and dual LP have the same objective value

In the case of the minimum weight perfect matching problem

* Assign avariable [a, = 0toeachnodeu € U
and a variable b, = 0toeachnodev eV

* Condition: for every edge (u,v) € U X V: /au + b, <

Cuv

* Given perfect matching M:

z cuv_Zau+Zb N

(u V)EM ueu vev
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Dual Linear Program
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* Variablesa, =

OforueUandb, =0forveV

maxz au+2bv

S. T.

ueu vevV /

Yu € U,Vv € V:Yau + b, < Ccypy |

* For every perfect matching M:

((D, w &a;’“ﬁn o(um( 9"?)

Z cuvziau+2bv

(u,v)EM \ uevu VEV

- bz\ g‘" all wv) e M

Q, C
a, ><b\ Cuv=au+bv J

Qs

——

w“\’ -:.C\N—q“-b\, =0

a, -
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Complementary Slackness
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* A perfect matching M is optimal if

Z Cop = Zau+2b

(u V)EM ueu vEV
zQ, + by
* Inthat case, for every (u,v) € M -
M:cuv—au—bv:O
— In this case, M is also an optimal solution to the LP relaxation of the

problem

— Every optimal LP solution can be characterized by such a property,
which is then generally referred to as complementary slackness

* Goal: Find a dual solution a,;, b,, and a perfect matching such
that the complementary slackness condition is satisfied!

— i.e., for every matching edge (u, v), we want wy, = 0

— We then know that the matching is optimal!
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Algorithm Overview
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Start with any feasible dual solution a,, b,

— i.e., solution satisfies that for all (u, v): ¢y, = a, + b,

¥,,: exaufkﬂf a,=0 , 'o,, =0 MYav d
Let Ey be the edges for which w,,, = 0

— Recall that wy, = ¢y, — a, — by,

°
Nis

Nis

* Compute maximum cardinality matching M of E|,

All edges (u, v) of M satisfy w,,, = 0
— Complementary slackness if satisfied
— If M is a perfect matching, we are done /

| * If M is not a perfect matching, dual solution can be improved

—_— =

BENEEES s
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Marked Nodes
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Define set of marked nodes L:
e Set of nodes which can be reached on alternating paths on

edges in ligstarting from unmatched nodes in U

V

u

edges E, withw,, = 0

optimal matching M

Ly: unmatched nodes in U

L: all nodes that can be reached
on alternating paths starting
from L,
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Marked Nodes
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Define set of marked nodes L:

e Set of nodes which can be reached on alternating paths on

adges in Ey starting from unmatched nodes in U
A \

Cr O edges Eo withw,,,, = 0
optimal matching M

Ly: unmatched nodes in U

L: all nodes that can be reached

>‘ on alternating paths starting
/ O from LO
Q Observadion:

all warled wodos Y V
ar waldued .

o ollarse: QU un. Pa{‘{a
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Marked Nodes — Vertex Cover
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Lemma:

a) There are no Ey-edges betweenU N Land V' \ L

b) Theset (U\L)U (V' NL)isa vertex cover of size |M|

of the graph induced by E,

wo
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Improved Dual Solution
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Recall: all edges (u, v) between U N L and V \ L have w,,, > 0

New dual solution: J W,y = Cuy— Q. —b,,
6 = ueﬁ}gew{wuv}
_ Ay, ifu € U\L
“wW=a,+6, ifueUnl

o | bw ifv e V\L
v " la,—-68,  ifvevnl

Claim: New dual solution is feasible (all wy,,, remain = 0) v
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Improved Dual Solution

Lemma: Obj. value of the dual solution grows by & (g — IMI).

¥ —~

Prqp&‘\ux U et q@:‘&‘»& =— || <_Mi >o

SN~——¢
ay, ifu € U\L

5 = : () ;o . D, ifveV\L
= ueunn pentVwwd “=a, + 6, , iffuelnl’ vy la, =6, if vevnlL
a + ZLV

D= S +5> b, D= =% T <

wel V€V

T="D + s(IUaLl = NaLl)

=D+ S(UaLl + WSl —(U=Ll + Vall)) =D+ (3 -1y
(Ll + WLl ~{ust) + Vel 2 ~IM)

N\ ___\4/ Ver dex coves
‘ { she (M)
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Termination
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Some terminology L

* Old dual solution: a,, b, Wy, = Cy, —a, — by,

* New dual solution: a,,, b,, W), =cy, —a, — b,

¢ Bo={(wv) i wyy =0}, Ef = {(w,v) : wy, = 0)

* M, M’ : max. cardinality matchings of graphs ind. By E,, E,

Claim: |M'| > |M| and if |M'| = |[M]|, we can assume that M = M.

e
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Termination
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Lemma: The algorithm terminates in at most 0 (n?) iterations.

Proof: _—

/
* Eachiterationy M'>M ' or | M'=Mand|[VNL|>|VNL]|
u‘:""w"" ou Q”‘buahbk qnt " are S—L{I “u F"ﬂg

= |2 L
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Min. Weight Perfect Matching: Summary _
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Theorem: A minimum weight perfect matching can be computed
in time 0(n%).
ﬁ

* First dual solution: e.g.,a, =0, b, = mi(rjl Cyp
ue

a“fcﬂ/ Q;—:O al<o wak &
e Compute set Ey: 0(n?)
O(u\?’) ?& >
* Compute max. cardinality matching of graph induced by E|,
— First iteration: 0(n?) - 0(n) = 0(n3)
— Otheriterations: 0(n?) - 0(1 + |M'| — |M])
Aplal cosd whan ‘m«ﬂnv:u& watdfﬁ’:/g(‘f)
f\vlq‘ o) whao [M'|= M| w) &u A w«ldn?‘& 3%)

MGTLI'AQ' au\z’) <‘a>»v®u Eo (2 \4)
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Matching Algorithms
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We have seen:

 O(mn) time alg. to compute a max. matching in bipartite graphs

. O(mnz) time alg. to compute a max. matching in general graphs

Better algorithms:

* Best known running time (bipartite and general gr.): O(m\/ﬁ)

Weighted matching:
* Edges have weight, find a matching of maximum total weight
* Bipartite graphs: polynomial-time primal-dual algorithm

* General graphs: can also be solved in polynomial time
(Edmond’s algorithms is used as blackbox)
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