Chapter 7
Randomization

Algorithm Theory
WS 2016/17

Fabian Kuhn

UNI
I

FREIBURG

Randomization

Randomized Algorithm:

* An algorithm that uses (or can use) random coin flips in order
to make decisions

We will see: randomization can be a powerful tool to
* Make algorithms faster

* Make algorithms simpler

 Make the analysis simpler

— Sometimes it’s also the opposite...
* Allow to solve problems (efficiently) that cannot be solved
(efficiently) without randomization

— True in some computational models (e.g., for distributed algorithms)

— Not clear in the standard sequential model

Algorithm Theory, WS 2016/17 Fabian Kuhn

UNI
f

FREIBURG

Contention Resolution

UNI

A simple starter example (from distributed computing)

Allows to introduce important concepts
... and to repeat some basic probability theory

Setting:

m«bs /""°‘f“~‘us
n processes, 1 resource

(e.g., shared database, communication channel, ...)

There are time slots 1,2,3, ...
In each time slot, only one client can access the resource
All clients need to regularly access the resource

If client i tries to access the resource in slot t:
— Successful iff no other client tries to access the resource in slot t

Algorithm Theory, WS 2016/17 Fabian Kuhn 3

FREIBURG

Algorithm

UNI
f

FREIBURG

Algorithm Ideas:

* Accessing the resource deterministically seems hard
— need to make sure that processes access the resource at different times
— or at least: often only a single process tries to access the resource

 Randomized solution:
In each time slot, each process tries with probability p.

Analysis:

* How large should p be?

* How long does it take until some process i succeeds?
* How long does it take until all processes succeed?
 What are the probabilistic guarantees?

Algorithm Theory, WS 2016/17 Fabian Kuhn 4

K= RS A B, € i.ep

Analysis etz AR C) = "R P)

UNI
FREIBURG

Events:

* A;:process i tries to access the resource in time slot
—im - —_
— Complementary event: A; ;

P(Ay) =p, P(Ay) =1-p

* §;:process i is successful in time slot ¢

—

45 t — dqlt ﬂ (ﬂ) +' 745"' '“‘Lf'

j#i

* Success probability (for " process 1)

P(Si0) = P - \ ?(A)= pli-p

Choou g A‘D Muxt\ﬂ\j'e ?‘g ,.‘.)

Algorithm Theory, WS 2016/17 Fabian Kuhn 5

Fixing p

Ciwn
nw->=~

3

1+ -

UNI

FREIBURG

- P(S;;) =pr(1

_1
P="%

* Asymptotics:

Forn = 2:

—)" 1 is maximized for

1 1 n—1
— P(‘Si,t) = E (1 — E) .
L/\,_W
1 1
M /\4_/‘3

1_ 1\" 1 1\" !
<(1-2) «Z<(1-=-2
il n e n

* Success probability:

Algorithm Theory, WS 2016/17

1 1
o < P(S,t) <o
3

Fabian Kuhn

Time Until First Success 9= TS0 7 on

UNI

FREIBURG

Random Variable T;: Vwa wadil find sucass of proc.

« T; =tif proc. i is successful in slot ¢ for the first time

e Distribution:

KW(T(T:l):q/ T/'T;=2)=(l-q)4 , ﬂ)(’r;:f)': ((-g\,)t".q

* T;is geometrically distributed with parameter

1 1\""' 1
i=P(5i,t)=£(1——> > —

n en’

* Expected time until first success:

1

[E[Tl] =—< e
q P
==

Algorithm Theory, WS 2016/17 Fabian Kuhn 7

Time Until First Success

UNI
FREIBURG

Failure Event F; ;: Process i does not succeed in time slots 1, ..., t

6;' + {l= I 2If ‘

)
2

* The events §; ; are independent for different ¢: £
t =
_ t
P(F,.) = P ﬂ Sir 1_[P(S;y) = (1-P(s;,))
r=1
X

|+ x s e

Ixek:
* We know that IP’(SL-,T) > 1/,

t
1
P(F;,) < <1 - —) < e/en
en zz
\(T

<@

Algorithm Theory, WS 2016/17 Fabian Kuhn 8

Time Until First Success

UNI
FREIBURG

S
No success by time t: P(Ti,t) < g~ /en eCQM — @Q‘Q

t = [en]: P(Fi) < /e

* Generally if ¢ = O(n): constant success probability

tzen-c-Inn:P(Fir) <Ypeimn = Ype

— I

p——

* For success probability 1 — 1/, we need t = O(nlogn).

* We say that i succeeds with high probability in O(nlogn) time.
;Tf — —
il | SR lddo comst.

dopeds du <
%N“Q)"U‘ C&k$l.c ?

Algorithm Theory, WS 2016/17 Fabian Kuhn 9

UNI

Time Until All Processes Succeed Jit

FREIBURG

Event Tt some process has not succeeded by time t
A I n

T(d)<e
:Ft:UTit *

TAE) = R4+ (B) - P(AaB) - :
s RINAT(R) =

Union Bound: For events &4, ..., &,

O (D P Oei sip(ei)

Probability that not all processes have succeeded by time t:

P(F) =P (Oﬂ’t> 2 P(F;.) < n /en
=

Algorithm Theory, WS 2016/17 Fabian Kuhn 10

“ow

Time Until All Processes Succeed

UNI

Claim: With high probability, all processes succeed in the first
O(nlogn) time slots.

Proof:
e P(F,) <n-et/en
* Sett =[en-(c+1)Inn]

—Cc+\) Zun

T(H)<n e = n (eQM) = —$=\7
n h

ff(ﬁb \ -;\‘

Remark: O(n log@ time slots are necessary for all processes to
succeed with reasonable probability

Algorithm Theory, WS 2016/17 Fabian Kuhn 11

FREIBURG

Primality Testing

UNI
f

FREIBURG

Problem: Given a natural numbern = 2, isn a prime number?

Simple primality test: ‘
M[ml sive + O @Ja)
1. ifniseventhen
2 return (n = 2)
3. for lf :2= 1 t;)(E\/ﬁd/ZJ doh b = O(0R)
4, if 2i + ivides n then

el V! Qxc;, Y SR A—& ‘...(uv‘
5 return false
6. return true

* Running time: 0(1/n)

Algorithm Theory, WS 2016/17 Fabian Kuhn 12

A Better Algorithm? =

’P

UNI
FREIBURG

* How can we test primality efficiently?
 We need a little bit of basic number theory...

Square Roots of Unity: In Z,,, where p is a prime, the only
solutions of the equation x* = 1 (mod p) are x = +1 (mod p)

o
/Zf = { l/ "t ?-l’g x’L =\ (waoed f)
x2-1 =0 (wel ¢) J‘\“\'k"‘r
KNx=) = D (lwedp) = (X*(x-\) = c-p
7
N - bu(oJ‘lld &a("ﬂs ‘M‘Q
ol Youg L P ® a s e e e 6 (e)

 If we find an x £ +1 (mod n) such that x? = 1 (mod n), we
can conclude that n is not a prime.

Algorithm Theory, WS 2016/17 Fabian Kuhn 13

UNI

Algorithm Idea

Claim: Let p > 2 be a prime number such that p — 1 = 2°d for an
integer s = 1 and some odd integer d = 3. Then for all a € Z,

2"d —

===

a® =1 (modp) or q —1 (mod p) forsome 0 <7 <s.

—
S—

Proof: (Qall xlsl (weodk ?) S Yé{-','l'ls (waodk ?)

* Fermat’s Little Theorem: Given a prime number p,
Va € Zy: aP~! =1 (modp)

|
Yoy = E

E_\
Q y %l +1
- (w!x ?) ?? e, — Q =

—_
/

Algorithm Theory, WS 2016/17 Fabian Kuhn 14

FREIBURG

Primality Test

UNI
FREIBURG

We have: If n is an odd primeandn — 1 = 2°d for an integers > 1
and an odd integer d = 3. Thenforalla € {1, ...,n — 1},

~» q%=1(modn) or a? % =—1(modn) forsome0 <r < s.

Idea: If we find an a € {1,...,n — 1} such that

— a%#1(modn) and a2’ @ %= —1(modn) forall0 <r <s,

——

we can conclude that n is not a prime.

* For every odd composite n > 2, at least 3/, of all possible a
satisfy the above condition -

| P“;j(‘ &

nAZICAEIR

)

* How can we find such a witness a efficiently?

Algorithm Theory, WS 2016/17 Fabian Kuhn 15

Miller-Rabin Primality Test

UNI
f

FREIBURG

* Given a natural numbern = 2, isn a prime number?

Miller-Rabin Test: \
if n is even then return (n = 2)

compute s, d such thatn — 1 = 2°d,;
¢ Nl

choose a € {2, ...,n — 2} uniformly at

=

d

x = a“ mod n;

& W s o\r%w.?

P (s} succ.) = |

\\‘- w IS Coweow“f

P(ied suee
random;

forr . =1tos—1do

x = x* mod n;

if x = n — 1 then return probably prime;

return composite;
——_————

Algorithm Theory, WS 2016/17 Fabian Kuhn

—

1
2
3
4
5. ifx =1orx =n—1 then return probably prime;
6
7
8
9

) 2%,

16

Analysis

UNI
FREIBURG

Theorem: e
* Ifnis prime, the Miller-Rabin test always returns true.

* If nis composite, the Miller-Rabin test returns false with
o 3 @“f&"f
probability at least °/,.

Proof:
* Ifnis prime, the test works for all values of a
* If nis composite, we need to pick a good witness a

Corollary: If the Miller-Rabin test is repeated k times, it fails to
detect a composite number n with probability at most 4.

=

Algorithm Theory, WS 2016/17 Fabian Kuhn 17

Running Time =/

UNI

FREIBURG

Cost of Modular Arithmetic:
* Representation of a number x € Z,: O(logn) bits

* Cost of adding two numbers x + y mod n: O(fag ")

* Cost of multiplying two numbers x - y mod n: waively 9(4’}&“7

— It’s like multiplying degree O (logn) polynomials
—> use FFTto computez =x - y 9(‘&8" : b{sl’gw foﬁﬂgép)

Algorithm Theory, WS 2016/17 Fabian Kuhn

18

Running Time

UNI

FREIBURG

Cost of exponentiation x¢

mod n:

* Can be done using 0 (log d) multiplications

 Base-2 representationofd: d =);_ logd d; 2!
* Fast exponentiation:

1. y=1;

2. fori:=|logd]|to0do

3 y = y% mod n;

4. ifd; = 1theny :=y-x modn;

5. returny; lofl = 1810 +)

D

e Example:d = 22 =10110,
Yl

Y = (x0) =

Algorithm Theory, WS 2016/17

(6 = ((xont)
2
= \((11.)‘»,()2,)()

Fabian Kuhn

19

Running Time L

Theorem: One iteration of the Miller-Rabin test can be implemented
with running time O(log? n - loglogn - logloglogn).

—

1. if nis even then return (n = 2)

2. compute s, d suchthatn — 1 = 2°d;

3. choosea € {2,...,n — 2} uniformly at random;
4. lx:=a%modn; O) wit

5. ifx =1orx =n—1 then return probably prime;
6.| forr:=1tos—1do Offgu) .

7 x=x°modn; o) wlt

8 if x = n — 1 then return probably prime;

9

return composite;

Algorithm Theory, WS 2016/17 Fabian Kuhn 20

U

Deterministic Primality Test

ZI-LI
S&

* If a conjecture called the generalized Riemann hypothesis (GRH)
is true, the Miller-Rabin test can be turned into a polynomial-
time, deterministic algorithm

- Itis then sufficient to try all a € {1, ..., 0 (log? n)}

* It has long not been proven whether a deterministic,
polynomial-time algorithm exists

* In 2002, Agrawal, Kayal, and Saxena gave an 0(log n)-time
deterministic algorithm

— Has been improved to 0(log® n)

* In practice, the randomized Miller-Rabin test is still the fastest
algorithm

Algorithm Theory, WS 2016/17 Fabian Kuhn 21

