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Randomization

Randomized Algorithm:

* An algorithm that uses (or can use) random coin flips in order
to make decisions

We will see: randomization can be a powerful tool to
* Make algorithms faster

* Make algorithms simpler

 Make the analysis simpler

— Sometimes it’s also the opposite...
* Allow to solve problems (efficiently) that cannot be solved
(efficiently) without randomization

— True in some computational models (e.g., for distributed algorithms)

— Not clear in the standard sequential model
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Contention Resolution

UNI

A simple starter example (from distributed computing)

Allows to introduce important concepts
... and to repeat some basic probability theory

Setting:

m«bs /""°‘f“~‘us
n processes, 1 resource

(e.g., shared database, communication channel, ...)

There are time slots 1,2,3, ...
In each time slot, only one client can access the resource
All clients need to regularly access the resource

If client i tries to access the resource in slot t:
— Successful iff no other client tries to access the resource in slot t
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Algorithm Ideas:

* Accessing the resource deterministically seems hard
— need to make sure that processes access the resource at different times
— or at least: often only a single process tries to access the resource

 Randomized solution:
In each time slot, each process tries with probability p.

Analysis:

* How large should p be?

* How long does it take until some process i succeeds?
* How long does it take until all processes succeed?
 What are the probabilistic guarantees?
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Events:

* A;:process i tries to access the resource in time slot
—im - —_
— Complementary event: A; ;

P(Ay) =p,  P(Ay) =1-p

* §;:process i is successful in time slot ¢

—

45 t — dqlt ﬂ (ﬂ ) +' 745"' '“‘Lf'

j#i

* Success probability (for " process 1)

P(Si0) = P - \ ?(A )= pli-p

Choou g A‘D Muxt\ﬂ\j'e ?‘g ,.‘.)
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Fixing p
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- P(S;;) =pr(1
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* Asymptotics:

Forn = 2:

— )" 1 is maximized for

1 1 n—1
— P(‘Si,t) = E (1 — E) .
L/\,_W
1 1
M /\4_/‘3

1_ 1\" 1 1\" !
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* Success probability:
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Random Variable T;:  Vwa wadil find sucass of proc.

« T; =tif proc. i is successful in slot ¢ for the first time

e Distribution:

KW(T(T:l):q/ T/'T;=2)=(l-q)4 , ﬂ)(’r;:f)': ((-g\,)t".q

* T;is geometrically distributed with parameter

1 1\""' 1
i=P(5i,t)=£(1——> > —

n en’

* Expected time until first success:

1

[E[Tl] =—< e
q P
==
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Time Until First Success
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Failure Event F; ;: Process i does not succeed in time slots 1, ..., t

6;' + {l= I 2If ‘

)
2

* The events §; ; are independent for different ¢: £
t =
_ t
P(F,.) = P ﬂ Sir 1_[ P(S;y) = (1-P(s;,))
r=1
X

|+ x s e

Ixek:
* We know that IP’(SL-,T) > 1/,

t
1
P(F;,) < <1 - —) < e/en
en zz
\(T

<@
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Time Until First Success
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S
No success by time t: P(Ti,t) < g~ /en eCQM — @Q‘Q

t = [en]: P(Fi) < /e

* Generally if ¢ = O(n): constant success probability

tzen-c-Inn:P(Fir) <Ypeimn = Ype

— I

p——

* For success probability 1 — 1/, we need t = O(nlogn).

* We say that i succeeds with high probability in O(nlogn) time.
;Tf — —
il | SR lddo comst.

dopeds du <
%N“Q)"U‘ C&k$l.c ?
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Event Tt some process has not succeeded by time t
A I n

T(d )<e
:Ft:UTit *

TAE) = R4+ (B) - P(AaB) - :
s RINAT(R) =

Union Bound: For events &4, ..., &,

O (D P Oei sip(ei)

Probability that not all processes have succeeded by time t:

P(F) =P (Oﬂ’t> 2 P(F;.) < n /en
=
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Time Until All Processes Succeed
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Claim: With high probability, all processes succeed in the first
O(nlogn) time slots.

Proof:
e P(F,) <n-et/en
* Sett =[en-(c+1)Inn]

—Cc+\) Zun

T(H)<n e = n (eQM) = —$=\7
n h

ff(ﬁb \ -;\‘

Remark: O(n log@ time slots are necessary for all processes to
succeed with reasonable probability
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Primality Testing
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Problem: Given a natural numbern = 2, isn a prime number?

Simple primality test: ‘
M[ml sive + O @Ja)
1. ifniseventhen
2 return (n = 2)
3. for lf :2= 1 t;)(E\/ﬁd/ZJ doh b = O(0R)
4, if 2i + ivides n then

el V! Qxc;, Y SR A—& ‘...(uv‘
5 return false
6. return true

* Running time: 0(1/n)
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* How can we test primality efficiently?
 We need a little bit of basic number theory...

Square Roots of Unity: In Z,,, where p is a prime, the only
solutions of the equation x* = 1 (mod p) are x = +1 (mod p)

o
/Zf = { l/ "t ?-l’g x’L =\ (waoed f)
x2-1 =0 (wel ¢) J‘\“\'k"‘r
KNx=) = D (lwedp) = (X*(x-\) = c-p
7
N - bu(oJ‘lld &a("ﬂs ‘M‘Q
ol Youg L P ® a s e e e 6 (e )

 If we find an x £ +1 (mod n) such that x? = 1 (mod n), we
can conclude that n is not a prime.
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Algorithm Idea

Claim: Let p > 2 be a prime number such that p — 1 = 2°d for an
integer s = 1 and some odd integer d = 3. Then for all a € Z,

2"d —

===

a® =1 (modp) or q —1 (mod p) forsome 0 <7 <s.

—
S—

Proof: (Qall xlsl (weodk ?) S Yé{-','l'ls (waodk ?)

* Fermat’s Little Theorem: Given a prime number p,
Va € Zy: aP~! =1 (modp)

|
Yoy = E

E_\
Q y %l +1
- (w!x ?) ?? e, — Q =

—_
/
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Primality Test
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We have: If n is an odd primeandn — 1 = 2°d for an integers > 1
and an odd integer d = 3. Thenforalla € {1, ...,n — 1},

~» q%=1(modn) or a? % =—1(modn) forsome0 <r < s.

Idea: If we find an a € {1,...,n — 1} such that

— a%#1(modn) and a2’ @ %= —1(modn) forall0 <r <s,

——

we can conclude that n is not a prime.

* For every odd composite n > 2, at least 3/, of all possible a
satisfy the above condition -

| P“;j(‘ &

nAZICAEIR

)

* How can we find such a witness a efficiently?
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Miller-Rabin Primality Test
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* Given a natural numbern = 2, isn a prime number?

Miller-Rabin Test: \
if n is even then return (n = 2)

compute s, d such thatn — 1 = 2°d,;
¢ Nl

choose a € {2, ...,n — 2} uniformly at

=

d

x = a“ mod n;

& W s o\r%w.?

P (s} succ.) = |

\\‘- w IS Coweow“f

P(ied suee
random;

forr . =1tos—1do

x = x* mod n;

if x = n — 1 then return probably prime;

return composite;
——_————
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5. ifx =1orx =n—1 then return probably prime;
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Theorem: e
* Ifnis prime, the Miller-Rabin test always returns true.

* If nis composite, the Miller-Rabin test returns false with
o 3 @“f&"f
probability at least °/,.

Proof:
* Ifnis prime, the test works for all values of a
* If nis composite, we need to pick a good witness a

Corollary: If the Miller-Rabin test is repeated k times, it fails to
detect a composite number n with probability at most 4.

=
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Cost of Modular Arithmetic:
* Representation of a number x € Z,: O(logn) bits

* Cost of adding two numbers x + y mod n: O(fag ")

* Cost of multiplying two numbers x - y mod n: waively 9(4’}&“7

— It’s like multiplying degree O (logn) polynomials
—> use FFTto computez =x - y 9(‘&8" : b{sl’gw foﬁﬂgép)

Algorithm Theory, WS 2016/17 Fabian Kuhn

18



Running Time
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Cost of exponentiation x¢

mod n:

* Can be done using 0 (log d) multiplications

 Base-2 representationofd: d = );_ logd d; 2!
* Fast exponentiation:

1. y=1;

2. fori:=|logd]|to0do

3 y = y% mod n;

4. ifd; = 1theny :=y-x modn;

5. returny; lofl = 1810 +)

D

e Example:d = 22 =10110,
Yl

Y = (x0) =
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Running Time L

Theorem: One iteration of the Miller-Rabin test can be implemented
with running time O(log? n - loglogn - logloglogn).

—

1. if nis even then return (n = 2)

2. compute s, d suchthatn — 1 = 2°d;

3. choosea € {2,...,n — 2} uniformly at random;
4. lx:=a%modn; O ) wit

5. ifx =1orx =n—1 then return probably prime;
6.| forr:=1tos—1do Offgu) .

7 x=x°modn; o) wlt

8 if x = n — 1 then return probably prime;

9

return composite;
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Deterministic Primality Test
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* If a conjecture called the generalized Riemann hypothesis (GRH)
is true, the Miller-Rabin test can be turned into a polynomial-
time, deterministic algorithm

- Itis then sufficient to try all a € {1, ..., 0 (log? n)}

* It has long not been proven whether a deterministic,
polynomial-time algorithm exists

* In 2002, Agrawal, Kayal, and Saxena gave an 0(log n)-time
deterministic algorithm

— Has been improved to 0(log® n)

* In practice, the randomized Miller-Rabin test is still the fastest
algorithm
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