Chapter 7
Randomization

Algorithm Theory
WS 2016/17

Fabian Kuhn

UNI
I

FREIBURG

Randomized Quicksort

UNI

FREIBURG

Quicksort: - f"“’(\
/
S % ,]
"
Sy <v % S, >V
S Pc(-wfc}v-b- \ J
function Quick (S: sequence): sequence; W9orsd - s Tuing B :
{returns the sorted sequence S} QM‘)
begin

Vau b wa ved 4\44.‘(,(55&(4 ;

i <
if #5 < 1 thenreturn S lhoose o ok ol taudow

else { choose pivot element v in §;
partition S into S, with elements < v,&—
and S, with elements > v
return | Quick(S,) |v |Quick(S;)

end;

Algorithm Theory, WS 2016/17 Fabian Kuhn

Randomized Quicksort Analysis

|
FREIBURG

UNI

Randomized Quicksort: pick uniform random element as pivot

[eler (| orgel ¥ -~ (

Running Time of sorting n elements:
e Let’s just count the number of comparisons

* In the partitioning step, all n — 1 non-pivot elements have to be

compared to the pivot o
\l
o
. - bR
* Number of comparisons: re yoet
p /M w“,;,uo
— 1 + #comparisons in recursive calls
S Y -t clewanls
= ,1\ —

* If rank of pivot is 1: —
recursive calls W|th r—1andn—r elements

Algorithm Theory, WS 2016/17 Fabian Kuhn 3

UNI
FREIBURG

Law of Total Expectation

* Given a random variable X and) A
* asetofevents A4, ..., Ay that partition () “f As A,

— E.g., for a second random variable Y, we could have YA
A ={weQ:Y(w) =i}

Law of Total Expectatlon

'\Q(X =x)
ZP(A) E[X | A ZP(Y y) - E[X | Y = y]J
Example: el .. 63
* X:outcome of rolling a die E(x1=3.5

« Ay ={Xiseven}, A; = {Xisodd}

§ == EO = RA) - EpOAY + A -E[X1A)
= g4 —;-3 = 3.5

Algorithm Theory, WS 2016/17 Fabian Kuhn 4

Randomized Quicksort Analysis

UNI
f

FREIBURG

Random variables: C=n-1 + C(~ Co

e (:total number of comparisons (for a given array of Iengthiz)
* R:rank of first pivot E(x+Y] =E(x] +E(¥]

(V. N
* Cp, C;-: number of comparisons for the 2 recursive calls

E[C] =n— 1+ E[C,] + E[C,]
Law of Total Expectation:
n

E[C] ZIP(R —) -E[C|R =]

1

r

P(R=r)-(n—1+E[C/R =7r]+E[C.|R=T1])

Ve

r=1 \ %“’“‘f' wlan L.
.Sd‘ﬂku& GQun “‘""] ..
o} laghh T3 Lo w-7

Algorithm Theory, WS 2016/17 Fabian Kuhn 5

Randomized Quicksort Analysis

UNI
f

FREIBURG

We have seen that: T = B

) _J)

E[C] = Z P(R=7) - (n =1+ EICIR = 7] +E[GIR = 7))
r=1

Define:
* T(n): expected number of comparisons when sorting n elements
E[C] = T(n)
E[C,IR=71]=T(r —1)
E[C/IR=r]=T(n—r)

Recursion:
n

1
T(n) =;E-(n—1+T(r—1)+T(n—r))
T(0) =T(1) = 0

Algorithm Theory, WS 2016/17 Fabian Kuhn 6

UNI
FREIBURG

Randomized Quicksort Analysis

Theorem: The expected number of comparisons when sorting n
elements using randomized quicksort is T(n) < 2nlnn.
T

Proof:
() =0

_7_17})=Z%-(7:L—M1+T(r—1)+T(n—r)), T(0) =0

r=1
|
=n-l+

I\
—
L
+
s
'.N\,
£
-

N
S
L
+
| £
—
x
£
X
-2

\

Fabian Kuhn

Algorithm Theory, WS 2016/17

UNI

Randomized Quicksort Analysis

FREIBURG

Theorem: The expected number of comparisons when sorting n
elements using randomized quicksortis T(n) < 2nlnn.

—

Proof:

4_ n
T(n)Sn—1+—-fx1nxdx
n 1 \

— _x*Inx x?
jxnx X = 5 —4

Q‘SD Pa%:(vh)D &Lew f\

(3

— Y v\lQM\a _!_ _‘_
\(u)éh-l'\'—v-‘(T 4 + ‘(’)

|
=\/\-I+2u9uv\ -0 -\-H

= ZIAQMV\ -\--vl‘ -1 < ZIAQ'AV\ C - O(“ ,&8 n) wlAP
<O [C <Qulan : \
% -] <wtu| qﬂ\ \ - \;\‘3 J

Algorithm Theory, WS 2016/17 Fabian Kuhn 8

Alternative Analysis

Array to sort: @,3,1,10,14,8,12,9,4,6,5,15,2,13,11]

Viewing quicksort run as a tree'

- w/@ / \

(o4, 8,1, 3,0

314 5 9,84, 19,16,13

Algorithm Theory, WS 2016/17 Fabian Kuhn 9

Comparisons

UNI
FREIBURG

 Comparisons are only between pivot and non-pivot elements

* Every element can only be the pivot once:
— every 2 elements can only be compared once!

* W.l.o.g., assume that the elements to sortare 1,2, ..., n

* Elementsi and j are compared if and only if either i orjis a
pivot before any element h:i < h < j is chosen as pivot
— i.e., iff i is an ancestor of j or j is an ancestor of i

\ ¢ W . n
| >) —
S-f-p-l o (Quumts
-

P(comparison betw.i and j) =j 11

Algorithm Theory, WS 2016/17 Fabian Kuhn —_— — 10

Counting Comparisons

|
FRE:BURG

UNI

Random variable for every pair of elements (i,j): (<))

Xij —_

——
—_——

{1, if there is a comparison between i and j

0, otherwise
2.

2. (I
if — —_— Y\. = N N

Number of comparisons: X

i<j

* Whatis E[X]?

Algorithm Theory, WS 2016/17 Fabian Kuhn 11

Randomized Quicksort Analysis

UNI

FREIBURG

Theorem: The expected number of comparisons when sorting n
elements using randomized quicksortis T(n) < 2nlnn.

Proof:

* Linearity of expectation:
For all random variables X4, ..., X, and all a4, ..., a, € R,

[zax

X=2x, Ex)-= EL§

a; E[X;].

\<) <)
=2 E{Y‘J
x<)
== \)_‘_H 2' 2') (+)
\<))~

Algorithm Theory, WS 2016/17 Fabian Kuhn 12

UNI

Randomized Quicksort Analysis L. ;-

FREIBURG

Theorem: The expected number of comparisons when sorting n
elements using randomized quicksortis T(n) < 2nlnn.

Proof:
n-1 n n—-1n-i+1
IE[X]—ZEE . —2221
L Lj-itl T k
=1 j=1+1 =1 k=2
w=i R A\
'“armoo\\c Sean s z \‘=2. Z% \"

N = 21" =2:§|(4lm—l)

._\Qﬂ <\ 4 G = Z(M—l)(“(u\ -—()
< 2w uwn

Algorithm Theory, WS 2016/17 Fabian Kuhn 13

Types of Randomized Algorithms

UNI

FREIBURG

Las Vegas Algorithm:
* always a correct solution
* running time is a random variable

 Example: randomized quicksort, contention resolution

eee———

Monte Carlo Algorithm:
* probabilistic correctness guarantee (mostly correct)
* fixed (deterministic) running time

 Example: primalitytest/ AT Al 1A cuit

Algorithm Theory, WS 2016/17 Fabian Kuhn

14

Minimum Cut

UNI

Reminder: Given a graph ¢ = (V,E), a cut is a partition (4, B)

T

of VsuchthatV =AUB,ANB=0,A,B+ @ v

Size of the cut (A4, B): # of edges crossing the cut

* For weighted graphs, total edge weight crossing the cut

_ er,c coun e(‘)v‘v:&a,
Goal: Find a cut of minimal size (i.e., of size A(G))

Maximum-flow based algorithm:
* Fix s, compute min s-t-cutforallt # s

+ 0(m-A(G)) = 0(mn) per s-t cut G dot
e Gives an O(mn/l(G)) = 0(mn?)-algorithm

o+

Best-known deterministic algorithm: O (mn + n? logn)

—_—

Algorithm Theory, WS 2016/17 Fabian Kuhn 15

FREIBURG

UNI
FREIBURG

Edge Contractions

* In the following, we consider multi-graphs that can have
multiple edges (but no self-loops)

W, ok not ok
4 Y
Contracting edge {u, v}: x u } \ ¢

- ' /
 Replace nodes u, v by new node w ~
* Foralledges {u,x} and {v, x}, add an edge {w,x} " -w

 Remove self-loops created at node w

contract {u, v}

Algorithm Theory, WS 2016/17 Fabian Kuhn 16

UNI
f

FREIBURG

Properties of Edge Contractions

Nodes:
* After contracting {u, v}, the new node represents u and v

e After a series of contractions, each node represents a subset of
original nodes

(1,2) L2 (1,2)
(4,6} 3 5,4,6)} 4 3,(4,5,6)}
5 (3 4,5,6)
(4, 6) (4,5,6)

Cuts:
* Assume in the contracted graph, w represents nodes S, C V

* The edges of a node w in a contracted graph are in a one-to-one
correspondence with the edges crossing the cut (S,,,V \ S,,)

Algorithm Theory, WS 2016/17 Fabian Kuhn 17

Randomized Contraction Algorithm

UNI
FREIBURG

Algorithm:

while there are > 2 nodes do
contract a uniformly random edge
return cut induced by the last two remaining nodes

(cut defined by the original node sets represented by the last 2 nodes)

Theorem: The random contraction algorithm returns a minimum
cut with probability at least 1/0(n?).

e We will show this next.

Theorem: The random contraction algorithm can be implemented
in time 0(n?).
* There are n — 2 contractions, each can be done in time O(n).

* You will show this later.
Algorithm Theory, WS 2016/17 Fabian Kuhn 18

Contractions and Cuts

UNI
f

FREIBURG

Lemma: If two original nodes u, v € V are merged into the same
node of the contracted graph, there is a path connecting u and v
in the original graph s.t. all edges on the path are contracted.

Proof:

* Contracting an edge {x, y} merges the node sets represented by
x and y and does not change any of the other node sets.

* The claim the follows by induction on the n number of edge

contractlons
\/Q

Algorithm Theory, WS 2016/17 Fabian Kuhn 19

Contractions and Cuts

UNI
f

FREIBURG

Lemma: During the contraction algorithm, the edge connectivity
(i.e., the size of the min. cut) cannot get smaller.

Proof:

e All cuts in a (partially) contracted graph correspond to cuts of
the same size in the original graph G as follows:

— For a node u of the contracted graph, let S,, be the set of original nodes
that have been merged into u (the nodes that u represents)

— Consider a cut (4, B) of the contracted graph

— (4',B") with OQ
ﬂ":USu' _E":USv QOD

UEA VEB
is a cut of G.

— The edges crossing cut (4, B) are in one-to-one correspondence with the
edges crossing cut (4, B).

Algorithm Theory, WS 2016/17 Fabian Kuhn 20

UNI

Contraction and Cuts A NE

FREIBURG

Lemma: The contraction algorithm outputs a cut (4, B) of the input
graph G if and only if it never contracts an edge crossing (4, B).

Proof:

1. If an edge crossing (A4, B) is contracted, a pair of nodes u € A4,
v € V is merged into the same node and the algorithm outputs
a cut different from (4, B).

2. If noedge of (4, B) is contracted, notwonodesu € A, v € B
end up in the same contracted node because every path
connecting u and v in G contains some edge crossing (4, B)

In the end there are only 2 sets = outputis (4, B)

e—

Algorithm Theory, WS 2016/17 Fabian Kuhn 21

Getting The Min Cut Speifre

FREIBURG

\\// :
Theorem: The probability that the algorithm outputs a minimum
1
cutisatleast2/n(n—1). = 4 k

Ih
!

To prove the theorem, we need the following claim:

Claim: If the minimum cut size of a multigraph G (no self-loops) is k,

G has at least kn/2 edges.
— #
Vo<l

Proof:

* Min cut has size k = all nodes have degree > k
— A node v of degree < k gives a cut ({v},V \ {v}) of size < k

* Number of edges m = 1/, - ¥, deg(v) S dogy = 2w

\
W2 -WN -k

2
Algorithm Theory, WS 2016/17 Fabian Kuhn 22

UNI

Getting The Min Cut % -/ "7

FREIBURG

Theorem: The probability that the algorithm outputs a minimum
cutis at least 2/n(n — 1).

Proof:
* Consider a fixed min cut (4, B), assume (4, B) has size k

* The algorithm outputs (4, B) iff none of the k edges crossing
(A, B) gets contracted.

* Before contraction i, there aren + 1 — i nodes %@
- and thus > @-I? 1 —1i)k/2 edges K

* If no edge crossing (A4, B) is contracted before, the probability to
contract an edge crossing (4, B) in step i is at most

k 2
n+1-Dk n+1-1i"
2 — —

Algorithm Theory, WS 2016/17 Fabian Kuhn 23

UNI

Getting The Min Cut

FREIBURG

Theorem: The probability that the algorithm outputs a minimum
cutis at least 2/n(n — 1).

Proof:

* If no edge crossing (A4, B) is contracted before, the probability to
contract an edge crossing (4, B) in step i isat most 2/, ;_;.

* Event &;: edge contracted in step i is not crossing (4, B)
(od : ?(a‘?. reduras (A,B) ‘?(& n £,n g} N-..N Su-l)
=T(E) TE,NE) ME,I€.1€D-

?(E*\A'l‘ 6‘ n...N &3)
2.

WG NEaaf) 2 |- o
'\(\)

Algorithm Theory, WS 2016/17 Fabian Kuhn 24

UNI

Getting The Min Cut

FREIBURG

Theorem: The probability that the algorithm outputs a minimum
cutis at least 2/n(n — 1).

Proof:

° P(El__l__ﬂgl N--N 81) > 1 — Z/n_i —

n—i—2

n—i

* No edge crossing (4, B) contracted: event £ = N2 €
TS n.n€,) =) NEIE) - - WELNE - nEu)

A St B R X
Cw o e3 5%

Algorithm Theory, WS 2016/17 Fabian Kuhn 25

Randomized Min Cut Algorithm

UNI
FREIBURG

Theorem: If the contraction algorithm is repeated 0 (n? log n)
times, one of the 0(n? logn) instances returns a min. cut w.h.p.

Proof: \ | + x < e’B

* Probability to not get a minimum cutin ¢ - (2) - In n iterations:

e (T)inn .
(e

Corollary: The contraction algorithm allows to compute a minimum
cutin 0(n* logn) time w.h.p.

* It remains to show that each instance can be implemented in
0(n?) time.

Algorithm Theory, WS 2016/17 Fabian Kuhn 26

