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Randomized Contraction Algorithm
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Algorithm: T co “‘Q“k q win . C:(* \;‘” “ %‘"“Y“
G

while there are > 2 nodes do
&¢) contract a uniformly random edge @
return cut induced by the last two remaining nodes

(cut defined by the original node sets represented by the last 2 nodes)

Theorem: The random contraction algorithm returns a specific

minimum cut with probability at least :
n(n—1)

———————

Theorem: The random contraction algorithm can be implemented
in time 0(n?).

* Therearen — 2 contractions, each can be done in time O(n).
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Implementing Edge Contractions
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Edge Contraction:

* Given: multigraph with n nodes
— assume that set of nodes is {1, ..., n}

e Goal: contract edge {u, v}
Data Structure
* We can use eithelﬁ adjacency Iistgfor an adjacency matrix

* Entryinrow i and column j: #edges betqueen nodes i and j
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Contracting An Edge
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Example: Contract one of the edges between 3 and 5
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Contracting An Edge
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Example: Contract one of the edges between 3 and 5
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Contracting An Edge
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Example: Contract one of the edges between 3 and 5
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Contracting an Edge
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Claim: Given the adjacency matrix of an n-node multigraph and

an edge {u, v}, one can contract the edge {u, v} in time O (n).
—

* Row/column of combined node {u, v} is sum of rows/columns
of uand v

* Row/column of u can be replaced by new row/column of
combined node {u, v}

e Swap row/column of v with last row/column in order to have
the new (n — 1)-node multigraph as a contiguous
(n—1) X (n — 1) submatrix
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Finding a Random Edge
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* We need to contract a uniformly random edge

* How to find a uniformly random edge in a multigraph?

— Finding a random non-zero entry (with the right probability) in an
adjacency matrix costs 0 (n?).

Idea for more efficient algorithm:

* First choose a random node u
— with probability proportional to the degree (#edges) of u

* Pickarandom edge of u
— only need to look at one row = time 0(n)

_—
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Choose a Random Node
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Edge Sampling:
1. Choose a node u € IV with probability
—(;eggu} _ deg(u)
ZUEV deg(v) - Zé’rn
2. Choose a uniformly randomedge of u <— Huwwe O(w)
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Choose a Random Node
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* We need to choose a random node u with probability deg(u)

the degrees of all the nodes

2m

Keep track of the number of edges m and maintain an array with

— Can be done with essentially no extra cost when doing edge contractions

Choose a random node:
degsum = 0;

for all nodes uelvl:
deg(u)

with probability

pick node u; terminate
else

degsum += deg(u)

Algorithm Theory, WS 2015/16 Fabian Kuhn

2m—degsum -

3)\“1 ' OCV\)

22



Randomized Min Cut Algorithm
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Theorem: If the contraction algorithm is repeated 0(n®logn)
times, one of the 0(n? logn) instances returns a min. cut w.h.p.

Corollary: The contraction algorithm allows to compute a minimum
cutin 0(n*logn) time w.h.p.

* One instance consists of n — 2 edge contractions

* Each edge contraction can be carried out in time 0 (n)
— Actually: O(current #nodes)

 Time per instance of the contraction algorithm: 0(n?)

%
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Can We Do Better?
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e Time O(n*logn) is not very spectacular, a simple max flow
based implementation has time 0(n*%).

However, we will see that the contraction algorithm is
nevertheless very interesting because:

1. The algorithm can be improved to beat every known
deterministic algorithm.

4. It allows to obtain strong statements about the distribution
of cuts in graphs.
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Better Randomized Algorithm

Recall:

Consider a fixed min cut (4, B), assume (4, B) has size k

The algorithm outputs (4, B) iff none of the k edges crossing
(A, B) gets contracted.

Throughout the algorithm, the edge connectivity is at least k
and therefore each node has degree > k

Before contraction i, there are n + 1 — i nodes and thus at
least(n + 1 — i)k /2 edges

If no edge crossing (Z, B) is contracted before, the probability
to contract an edge crossing (A4, B) in step i is at most

k 2
n+1-Dk n+1-1i
2 e
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Improving the Contraction Algorithm
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* For a specific min cut (4, B), if (4, B) survives the first i
contractions,

2
P(edge crossing (4, B) in contraction i + 1) < ma—l

* Observation: The probability only gets large for large i

* l|ldea: The early steps are much safer than the late steps.

Maybe we can repeat the late steps more often than the early
ones.
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Safe Contraction Phase
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Lemma: A given min cut (4, B) of an n-node graph G survives the

firstn — ["/\/E + 1} cont

Proof:

—

ractions, with probability > /..

* Event &;: cut (4, B) survives contraction {
* Probability that (4, B) survives the first n — t contractions:

W-Z n-3 ow-YH

—
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Better Randomized Algorithm

Let’s simplify a bit:

* Pretend that n/\/i is an integer (for all n we will need it).

* Assume that a given min cut survives the first n — "/\/E
——

contractions with probability > 1/,,.

contract(G, t):
e Starting with n-node graph G, perform n — t edge contractions

such that the new graph has t nodes. a-1/—
W (T

mincut(G): N =
|

=

1. X, := mincut (Contract(g,n/ﬁ)); & —<_

2. X, := mincut (contract(G,n/@));

3. return min{X, X,};
Algorithm Theory, WS 2015/16
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Success Probability
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mincut(G):

1. X; := mincut (Contract(G,n/\/i));
gl — oy

2. X, := mincut (contract(G,n/\/E));

3. return min{X{, X5};

P(n): probability that the above algorithm returns a min cut when
= applied to a graph with n nodes.

* Probability that X; is a min cut = Lz °?C/E)

Recursion:

Pozi-(1-Lem) = P& - 773 P@=)
_— - - .
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Theorem: The recursive randomized min cut algorithm returns a
minimum cut with probability at least 1/log, n.

Proof (by induction on n):

n 1 n\’

/ga%“‘&e'. wW=2 v 4
u ___\_’P(“/ & X — 7
W8 Sky: PG = P(VR) -+ /e
o L (-5
T () Y GlR" 4 > ‘
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Running Time L
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1. X; = mincut (Contract((},n/ﬁ\/?)); W — > "'/G_
2. X, := mincut (cgltrgct(G,n/ﬁ)); y

] — v
3. return min{X,, X,}; Kasles oy °=ﬂ°§\,°‘
Recursion: TW=a T + 0 b o n Loy )

* T(n):time to apply algorithm to n-node graphs

e Recursive calls: 2T ("/\/5)

* Number of contractions to get to "‘/\/E nodes: O(n)

T(Lz) = 2T (%) + 0(n?), T(2) =0(1)

— ‘L/ﬂﬂ = @(\’\1’&)8 “)
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Running Time ¢ < €°

Theorem: The running time of the recursive, randomized min cut
algorithm is O (n?logn).

Proof: (Masler ’ﬂm\) «5:9( [,6&)
 Can be shown in the usual way, by induction on n /
Q\__\_ t< ej’ﬁ" —,‘—.- —\:= éiﬁl‘f
Remark: fo&u. W
* The running time is only by an OM)-factor slower than
the basic contraction algorithm. Succ. pebo. 2_
* The success probability is exponentially better! "

\QY we waut X wiw, cut \N-\A.?. (\ -—\M—c) L we weed @(,@12.\) Rep.
ﬁw\m\\,& Puee @(\f-ﬁﬂﬁzn\) —
Tt Lot a&vt Ol wmmn + \'3206 V\)
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Number of Minimum Cuts (G 2>
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Given a graph G, how many minimum cuts can there be?

Or alternatively: If G has edge connectivity k, how many ways
are there to remove k edges to disconnect G?

Note that the total number of cuts is large.

n—\

, -2
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Number of Minimum Cuts
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Example: Ring with n nodes
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Minimum cut size: 2
=

Every two edges
induce a min cut

Number of edge pairs:

Are there graphs with
more min cuts?
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Number of Min Cuts

UNI
FREIBURG

Theorem: The number of minimum cuts of a graph is at most (Tzl)

Proof: - an =7
* Assume there are s mincuts \,.--,S
5 &

 Fori€{l,..,s}, define event C;: @& @
C; = {basic contraction algorithm returns min cut i}
2
* We know that fori € {1, ...,s}: P(C;) = 1/(;) = wa-D)

N
* Events Cy, ..., C; are disjoint:

s S S< (_;)
| = P C;l=) P > v Lo ceunnls
— (g ) ; (721) f{:u\-l:;& S i-r\(@)
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e
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