

Chapter 8 Approximation Algorithms

Algorithm Theory WS 2016/17

Fabian Kuhn

Approximation Algorithms

- Optimization appears everywhere in computer science
- We have seen many examples, e.g.:
 - scheduling jobs
 - traveling salesperson
 - maximum flow, maximum matching
 - minimum spanning tree
 - minimum vertex cover
 - **–** ...
- Many discrete optimization problems are NP-hard
- They are however still important and we need to solve them
- As algorithm designers, we prefer algorithms that produce solutions which are provably good, even if we can't compute an optimal solution.

Approximation Algorithms: Examples

We have already seen two approximation algorithms

- Metric TSP: If distances are positive and satisfy the triangle inequality, the greedy tour is only by a log-factor longer than an optimal tour
- Maximum Matching and Vertex Cover: A maximal matching gives solutions that are within a factor of 2 for both problems.

Approximation Ratio

An approximation algorithm is an algorithm that computes a solution for an optimization with an objective value that is provably within a bounded factor of the optimal objective value.

Formally:

- OPT ≥ 0 : optimal objective value ALG ≥ 0 : objective value achieved by the algorithm
- Approximation Ratio α :

Minimization:
$$\alpha := \max_{\text{input instances}} \frac{ALG}{OPT}$$

Maximization:
$$\alpha := \max_{\text{input instances}} \frac{\text{OPT}}{\text{ALG}}$$

Example: Load Balancing

We are given:

- m machines $M_1, ..., M_m$
- n jobs, processing time of job i is t_i

Goal:

Assign each job to a machine such that the makespan is minimized

makespan: largest total processing time of any machine

The above load balancing problem is NP-hard and we therefore want to get a good approximation for the problem.

Greedy Algorithm

There is a simple greedy algorithm:

- Go through the jobs in an arbitrary order
- When considering job i, assign the job to the machine that currently has the smallest load.

Example: 3 machines, 12 jobs

Greedy Assignment:

$$M_1: \begin{bmatrix} 3 & 1 & 6 & 1 & 5 \end{bmatrix}$$

$$M_2$$
: 4 4 3

$$M_3$$
: 2 3 4 2

Optimal Assignment:

$$M_1$$
: 3 4 2 3 1

$$M_3$$
: 4 2 1 5

- We will show that greedy gives a 2-approximation
- To show this, we need to compare the solution of greedy with an optimal solution (that we can't compute)
- Lower bound on the optimal makespan T^* :

$$T^* \ge \frac{1}{m} \cdot \sum_{i=1}^{n} t_i$$

- Lower bound can be far from T*:
 - -m machines, m jobs of size 1, 1 job of size m

$$T^* = m, \qquad \frac{1}{m} \cdot \sum_{i=1}^n t_i = 2$$

- We will show that greedy gives a 2-approximation
- To show this, we need to compare the solution of greedy with an optimal solution (that we can't compute)
- Lower bound on the optimal makespan T^* :

$$T^* \ge \frac{1}{m} \cdot \sum_{i=1}^{n} t_i$$

• Second lower bound on optimal makespan T^* :

$$T^* \ge \max_{1 \le i \le n} t_i$$

Theorem: The greedy algorithm has approximation ratio ≤ 2 , i.e., for the makespan T of the greedy solution, we have $T \leq 2T^*$.

Proof:

- For machine k, let T_k be the time used by machine k
- Consider some machine M_i for which $T_i = T$
- Assume that job j is the last one schedule on M_i :

$$M_i$$
: $T-t_j$ t_j

• When job j is scheduled, M_i has the minimum load

Theorem: The greedy algorithm has approximation ratio ≤ 2 , i.e., for the makespan T of the greedy solution, we have $T \leq 2T^*$.

Proof:

• For all machines M_k : load $T_k \ge T - t_j$

Can We Do Better?

The analysis of the greedy algorithm is almost tight:

- Example with n = m(m-1) + 1 jobs
- Jobs $1, \dots, n-1=m(m-1)$ have $t_i=1$, job n has $t_n=m$

Greedy Schedule:

$$M_1$$
: 1111 ... 1 $t_n = m$

$$M_2$$
: 1111 ... 1

$$M_3$$
: 1111 ... 1

$$M_m: 1111 \cdots 1$$

Improving Greedy

Bad case for the greedy algorithm:

One large job in the end can destroy everything

Idea: assign large jobs first

Modified Greedy Algorithm:

- 1. Sort jobs by decreasing length s.t. $t_1 \ge t_2 \ge \cdots \ge t_n$
- 2. Apply the greedy algorithm as before (in the sorted order)

Lemma: If n > m: $T^* \ge t_m + t_{m+1} \ge 2t_{m+1}$

Proof:

- Two of the first m+1 jobs need to be scheduled on the same machine
- Jobs m and m+1 are the shortest of these jobs

Analysis of the Modified Greedy Alg.

Theorem: The modified algorithm has approximation ratio $\leq 3/2$.

Proof:

- We show that $T \leq 3/2 \cdot T^*$
- As before, we consider the machine M_i with $T_i = T$
- Job j (of length t_j) is the last one scheduled on machine M_i
- If j is the only job on M_i , we have $T = T^*$
- Otherwise, we have $j \ge m+1$
 - The first m jobs are assigned to m distinct machines

Metric TSP

Input:

- Set V of n nodes (points, cities, locations, sites)
- Distance function $d: V \times V \to \mathbb{R}$, i.e., d(u, v) is dist from u to v
- Distances define a metric on V:

$$d(u,v) = d(v,u) \ge 0,$$
 $d(u,v) = 0 \Leftrightarrow u = v$
 $\forall u, v, w \in V : d(u,v) \le d(u,w) + d(w,v)$

Solution:

- Ordering/permutation $v_1, v_2, ..., v_n$ of the vertices
- Length of TSP path: $\sum_{i=1}^{n-1} d(v_i, v_{i+1})$
- Length of TSP tour: $d(v_1, v_n) + \sum_{i=1}^{n-1} d(v_i, v_{i+1})$

Goal:

Minimize length of TSP path or TSP tour

Metric TSP

- The problem is NP-hard
- We have seen that the greedy algorithm (always going to the nearest unvisited node) gives an $O(\log n)$ -approximation
- Can we get a constant approximation ratio?
- We will see that we can...

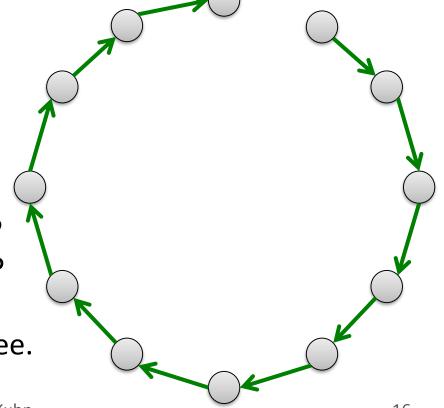
TSP and MST

Claim: The length of an optimal TSP path is lower bounded by the weight of a minimum spanning tree

Proof:

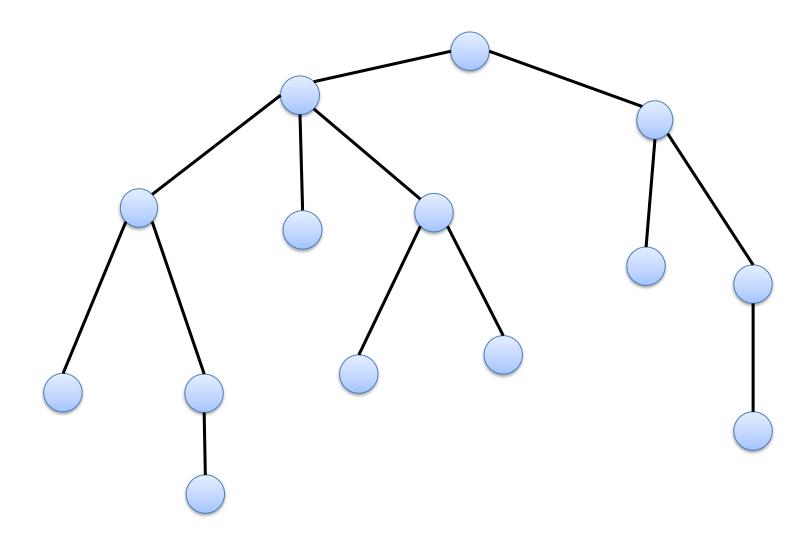
A TSP path is a spanning tree, it's length is the weight of the tree

Corollary: Since an optimal TSP tour is longer than an optimal TSP path, the length of an optimal TSP tour is also lower bounded by the weight of a minimum spanning tree.



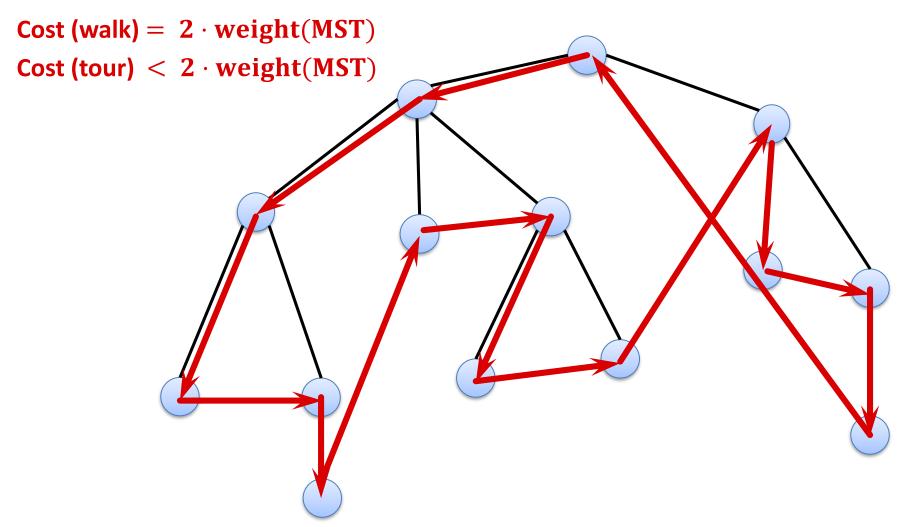
The MST Tour

Walk around the MST...



The MST Tour

Walk around the MST...



Approximation Ratio of MST Tour

Theorem: The MST TSP tour gives a 2-approximation for the metric TSP problem.

Proof:

- Triangle inequality \rightarrow length of tour is at most 2 · weight(MST)
- We have seen that weight(MST) < opt. tour length

Can we do even better?

Metric TSP Subproblems

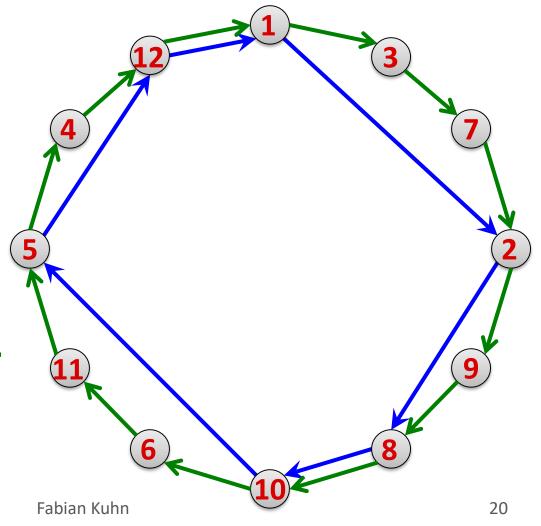
Claim: Given a metric (V, d) and (V', d) for $V' \subseteq V$, the optimal TSP path/tour of (V', d) is at most as large as the optimal TSP

path/tour of (V, d).

Optimal TSP tour of nodes 1, 2, ..., 12

Induced TSP tour for nodes 1, 2, 5, 8, 10, 12

blue tour ≤ green tour



TSP and Matching

- Consider a metric TSP instance (V,d) with an even number of nodes |V|
- Recall that a perfect matching is a matching $M \subseteq V \times V$ such that every node of V is incident to an edge of M.
- Because |V| is even and because in a metric TSP, there is an edge between any two nodes $u, v \in V$, any partition of V into |V|/2 pairs is a perfect matching.
- The weight of a matching *M* is the sum of the distances represented by all edges in *M*:

$$w(M) = \sum_{\{u,v\} \in M} d(u,v)$$

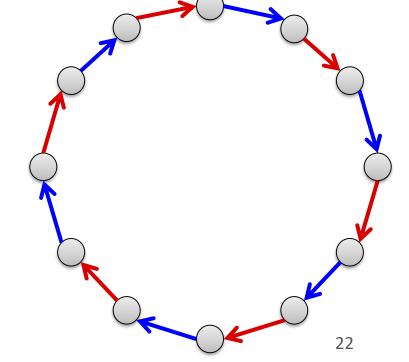
TSP and Matching

Lemma: Assume we are given a TSP instance (V, d) with an even number of nodes. The length of an optimal TSP tour of (V, d) is at least twice the weight of a minimum weight perfect matching of (V, d).

Proof:

• The edges of a TSP tour can be partitioned into 2 perfect

matchings



Minimum Weight Perfect Matching

Claim: If |V| is even, a minimum weight perfect matching of (V, d) can be computed in polynomial time

Proof Sketch:

- We have seen that a minimum weight perfect matching in a complete bipartite graph can be computed in polynomial time
- With a more complicated algorithm, also a minimum weight perfect matching in complete (non-bipartite) graphs can be computed in polynomial time
- The algorithm uses similar ideas as the bipartite weighted matching algorithm and it uses the Blossom algorithm as a subroutine

Algorithm Outline

Problem of MST algorithm:

Every edge has to be visited twice

Goal:

 Get a graph on which every edge only has to be visited once (and where still the total edge weight is small compared to an optimal TSP tour)

Euler Tours:

- A tour that visits each edge of a graph exactly once is called an Euler tour
- An Euler tour in a (multi-)graph exists if and only if every node of the graph has even degree
- That's definitely not true for a tree, but can we modify our MST suitably?

Euler Tour

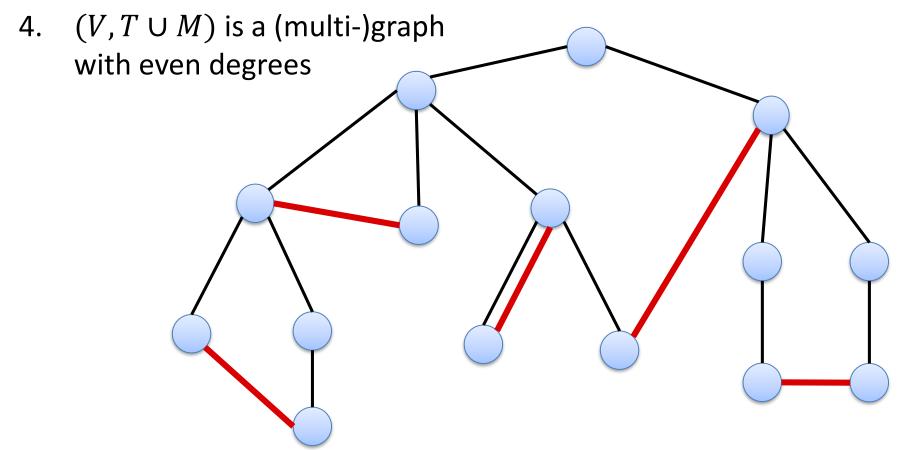
Theorem: A connected (multi-)graph G has an Euler tour if and only if every node of G has even degree.

Proof:

- If G has an odd degree node, it clearly cannot have an Euler tour
- If G has only even degree nodes, a tour can be found recursively:
- 1. Start at some node
- 2. As long as possible, follow an unvisited edge
 - Gives a partial tour, the remaining graph still has even degree
- 3. Solve problem on remaining components recursively
- 4. Merge the obtained tours into one tour that visits all edges

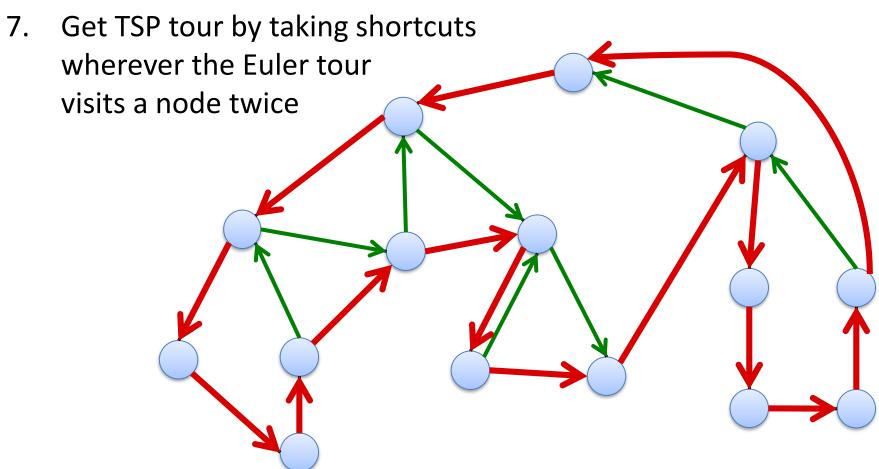
TSP Algorithm

- 1. Compute MST T
- 2. V_{odd} : nodes that have an odd degree in T ($|V_{\text{odd}}|$ is even)
- 3. Compute min weight perfect matching M of (V_{odd}, d)



TSP Algorithm

- 5. Compute Euler tour on $(V, T \cup M)$
- 6. Total length of Euler tour $\leq \frac{3}{2} \cdot TSP_{OPT}$



TSP Algorithm

The described algorithm is by Christofides

Theorem: The Christofides algorithm achieves an approximation ratio of at most $\frac{3}{2}$.

Proof:

- The length of the Euler tour is $\leq \frac{3}{2} \cdot \text{TSP}_{\text{OPT}}$
- Because of the triangle inequality, taking shortcuts can only make the tour shorter

Set Cover

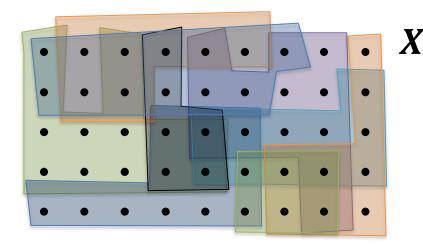
Input:

- A set of elements X and a collection S of subsets X, i.e., $S \subseteq 2^X$
 - such that $\bigcup_{S \in \mathcal{S}} S = X$

Set Cover:

• A set cover \mathcal{C} of (X, \mathcal{S}) is a subset of the sets \mathcal{S} which covers X:

$$\bigcup_{S \in \mathcal{C}} S = X$$



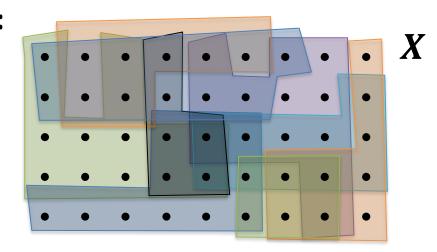
Minimum (Weighted) Set Cover

Minimum Set Cover:

- Goal: Find a set cover \mathcal{C} of smallest possible size
 - i.e., over X with as few sets as possible

Minimum Weighted Set Cover:

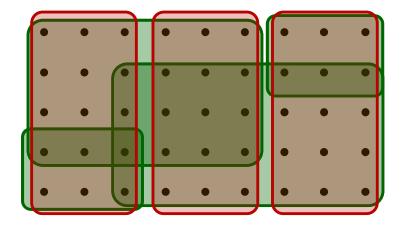
- Each set $S \in S$ has a weight $w_S > 0$
- Goal: Find a set cover C of minimum weight



Minimum Set Cover: Greedy Algorithm

Greedy Set Cover Algorithm:

- Start with $\mathcal{C} = \emptyset$
- In each step, add set $S \in S \setminus C$ to C s.t. S covers as many uncovered elements as possible



Greedy Weighted Set Cover Algorithm:

- Start with $C = \emptyset$
- In each step, add set $S \in S \setminus C$ with the best weight per newly covered element ratio (set with best efficiency):

$$S = \arg\min_{S \in \mathcal{S} \setminus \mathcal{C}} \frac{w_S}{|S \setminus \bigcup_{T \in \mathcal{C}} T|}$$

Analysis of Greedy Algorithm:

- Assign a price p(x) to each element $x \in X$: The efficiency of the set when covering the element
- If covering x with set S, if partial cover is C before adding S:

$$p(e) = \frac{w_S}{|S \setminus \bigcup_{T \in \mathcal{C}} T|}$$

- Universe $X = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$
- Sets $S = \{S_1, S_2, S_3, S_4, S_5, S_6\}$

$$S_1 = \{1, 2, 3, 4, 5\},$$
 $w_{S_1} = 4$
 $S_2 = \{2, 6, 7\},$ $w_{S_2} = 1$
 $S_3 = \{1, 6, 7, 8, 9\},$ $w_{S_3} = 4$
 $S_4 = \{2, 4, 7, 9, 10\},$ $w_{S_4} = 6$
 $S_5 = \{1, 3, 5, 6, 7, 8, 9, 10\},$ $w_{S_5} = 9$
 $S_6 = \{9, 10\},$ $w_{S_6} = 3$

Lemma: Consider a set $S = \{x_1, x_2, ..., x_k\} \in S$ be a set and assume that the elements are covered in the order $x_1, x_2, ..., x_k$ by the greedy algorithm (ties broken arbitrarily).

Then, the price of element x_i is at most $p(x_i) \le \frac{w_S}{k-i+1}$

Lemma: Consider a set $S = \{x_1, x_2, ..., x_k\} \in S$ be a set and assume that the elements are covered in the order $x_1, x_2, ..., x_k$ by the greedy algorithm (ties broken arbitrarily).

Then, the price of element x_i is at most $p(x_i) \le \frac{w_S}{k-i+1}$

Corollary: The total price of a set $S \in \mathcal{S}$ of size |S| = k is

$$\sum_{x \in S} p(x) \le w_S \cdot H_k, \quad \text{where } H_k = \sum_{i=1}^k \frac{1}{i} \le 1 + \ln k$$

Corollary: The total price of a set $S \in S$ of size |S| = k is

$$\sum_{x \in S} p(x) \le w_S \cdot H_k, \quad \text{where } H_k = \sum_{i=1}^k \frac{1}{i} \le 1 + \ln k$$

Theorem: The approximation ratio of the greedy minimum (weighted) set cover algorithm is at most $H_s \leq 1 + \ln s$, where s is the cardinality of the largest set ($s = \max_{S \in \mathcal{S}} |S|$).