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Randomized Algorithms

* An algorithm that uses (or can use) random coin flips in order
to make decisions

* randomization can be a powerful tool to make algorithms
faster or simpler

First: Short Repetition of Basic Probability Theory

* We need: basic discrete probability theory

— probability spaces, probability events, independence, random
variables, expectation, linearity of expectation, Markov inequality

e Literature, for example
— your old probability theory book / lecture notes / ...
— Appendix C of book of Cormen, Rivest, Leiserson, Stein
— http://www.ti.inf.ethz.ch/ew/courses/APC15/material/ra.pdf
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Probability Space and Events
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Definition: A (discrete) probability space is a pair (£, ), where

* (): (countable) set of elementary events

e [P:assigns a probability to each w € () TF(W) z20

P:Q->R,, s.t ZIP’(a))=1
weQ —

Definition: An event € is a subset of ()

e Event £ C (): set of basic events

* Probability of £
P(E) = 2 P(w)
;

weE
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Example: Probability Space, Events
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Example: Probability Space, Events
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Definition: Events A € ( and B <€ () are independent iff
P(ANB) =P(A) - P(B)
\/c( ‘/Z ‘\/2
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Random Variables
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Definition: A random variable X is a real-valued function on the

elementary events () & 0 Xew)
* We usually write X instead of X(w) =11 .63

e We also write
P(X =x) = P({w €0 X(w) = x})

Examples:
o X'P:X'0P(1) =1,X"P(2)=2,..,X"P(6) =6
o XPot: xPot(1) = 6,XP°%(2) =5,..., X"t (6) = 1

« Note that forall w € Q, Xt°P(w) + X?°'(w) = 7
* To denote this, we write Xt°P 4 xPot =7
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Indicator Random Variables
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A random variable with only takes values 0 and 1 is called a
Bernoulli random variable or an indicator random variable.

2 / d (21 V-
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ol o Qe , taud. Y=

Y=o, Yey=1, Y(3)=0, ...
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Independent Random Variables ;

Definition: Two random variables X and Y are called independent if
VX, yER: PX=xAY =y)=PX =x) -P(Y =y)
Jwo com Llps (Parr cotw)
Y=1 & (ot Pp » H IV¥=13= 4 HT, THS
V=] = emA—(:?w.av( Ha co%u%es & H

P(X<0 4 Y=0) = P(3TT) = ‘/“

/(f(y=0/\ Y—’():?({Tﬂﬁ) :‘/‘f
P(X=( Y=0) =K $HH3) =%
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Independent Random Variables
TAnBa )= FAR3) P
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Definition: A collection of andom variables X;, X5, ..., X,, on a
probability space (1 is called mutually independent if

Vk > 2,1 < il < e < ik Sn,‘v’xil,...,xik eER:

P(X;, =xi, A AXy =x;,) = P(iil/:_'fi_l) e P(XG, = xy,)

wot Ao sawa as Palthx \uﬁq?.
@(QM?(Q . 2 (e*«« QQ’)P;

X, =\ < | e is A

Xl = & 1" {Ql@ L3

Ys =‘ D Qx“'u.z U

T(Y,=1 4 Y=l X=1) =0
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Expectation
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Definition: The expectation of a random variable X is defined as

E[X] := 2 ic-rp(x=x)=z£_(_ai)-u»(\w2

xeX(Q) wW€EN
(A=

Example:
2
* recall: Xtop is outcome of rolling a die X = Q(UM)
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Expectation: Examples
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Sums and Products of Random Variables
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Linearity of Expectation:

For random variables X and Y and any ¢ € R, we have

ElcX] = c-E[X]
E[X + Y] = E[X] + E[Y]

* holds also if the random variables are not independent

Product of Random Variables:
For two independent random variables X and Y, we have
E[X - Y] = E|X] : E[Y]

——
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Sums and Products of Random Variables
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Linearity of Expectation:

For random variables X and Y and any ¢ € R, we have

ElcX] = c-E|[X],
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Sums and Products of Random Variables
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Product of Random Variables:

For two independent random variables X and Y, we have
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Linearity of Expectation: Example (Y= 7

UNI
FREIBURG

fFlY)= 0(;-?) 'H'P:t';
Sequence of coin flips: Cj, CZ, +€{H,T} %.¢

0 g
* Stop as soon as the first H H turns up FN=S0 09
<>

Random variable X: number of T before first H

T(X—() = (l‘f) P
Indicator random variable & (i = 1):

c X;=1: it" coin flip happ—ens and its outcome is T

———

X; =0: OtherWise: |
Fox=n = =9 ELXY= (gl
X = X‘ + Xz + XS + ... + Y
[ED(] = E[X\ +X 54 3 ZIE()(l 2( (-?) _ =P

\- (\—f)
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———— ——
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Markov’s Inequality
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Lemma: Let X be a nonnegative random variable.
Thenforallc > 0

P(X > c- E[X]) s%

—

Va0):=EL X -EOY) B2 E@) <2
220 m

T((x-EX} e & Vel ¢ 2
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For events A € () and B <€ (), the conditional probability of A
given B is defined as

Conditioning on event B defines a new probability space G%B, P")

P(w)

Yo E%B : P'(w) = M

=9

Two events are independent iff P(A|B) = P(A)
e———————
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Law of Total Probability / Expectation A
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Lemma: Let X and Y be two random variables on the samen

probability space (€, P). We then have @%
: 3

VxER:P(X =x) = z PX=x|Y=y)-P(Y=1y).
yeY(Q)

= T= P RAIR) +RO) TR+ -
E[X] = z E[X|Y =y] - P =v)

yEY(Q)
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Important Discrete Prob. Distributions ;
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Bernoulli Random Variable X : Q — {0, 1}
PX=1)=pPX=0=1-p, ElX]=p
X= X,+...+Xu
Binomial Random Variable X ~ Bin(n, p)

vk €10,..,n}: P(X =k) = (Z) pk(1—p)» %  E[X] =np

—

* measures number of ones in n independent biased coin flip

Geometric Random Variables X ~ Geom(p)
Vk=>1: P(X =k)=p(1—-p)t,  EX]= >
* measures number independent biased coin flips are necessary
to get one “heads”
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