Chapter 3

Dynamic Programming

Algorithm Theory WS 2017/18

Fabian Kuhn

Dynamic Programming (DP)

$$
\text { DP } \approx \text { Recursion + Memoization }
$$

Recursion: Express problem recursively in terms of
(a 'small' number of) subproblems (of the same kind)

Memoize: Store solutions for subproblems reuse the stored solutions if the same subproblems has to be solved again

Weighted interval scheduling: subproblems $W(1), W(2), W(3), \ldots$
runtime $=$ \#subproblems • time per subproblem

Dynamic Programming

„Memoization" for increasing the efficiency of a recursive solution:

- Only the first time a sub-problem is encountered, its solution is computed and then stored in a table. Each subsequent time that the subproblem is encountered, the value stored in the table is simply looked up and returned
(without repeated computation!).
- Computing the solution: For each sub-problem, store how the value is obtained (according to which recursive rule).

Dynamic Programming

Dynamic programming / memoization can be applied if

- Optimal solution contains optimal solutions to sub-problems (recursive structure)
- Number of sub-problems that need to be considered is small

Matrix-chain multiplication

Given: sequence (chain) $\left\langle A_{1}, A_{2}, \ldots, A_{n}\right\rangle$ of matrices
Goal: compute the product $A_{1} \cdot A_{2} \cdot \ldots \cdot A_{n}$

$$
\left(A_{1} A_{2}\right) \cdot\left(A_{3} A_{4}\right)
$$

Problem: Parenthesize the product in a way that minimizes the number of scalar multiplications.

Definition: A product of matrices is fully parenthesized if it is

- a single matrix
- or the product of two fully parenthesized matrix products, surrounded by parentheses.

Example

All possible fully parenthesized matrix products of the chain $\left\langle A_{1}, A_{2}, A_{3}, A_{4}\right\rangle:$

$$
\begin{aligned}
& \left(A_{1}\left(A_{2}\left(A_{3} A_{4}\right)\right)\right) \\
& \left(A_{1}\left(\left(A_{2} A_{3}\right) A_{4}\right)\right) \\
& \left(\left(A_{1} A_{2}\right)\left(A_{3} A_{4}\right)\right) \\
& \left(\left(A_{1}\left(A_{2} A_{3}\right)\right) A_{4}\right) \\
& \left(\left(\left(A_{1} A_{2}\right) A_{3}\right) A_{4}\right)
\end{aligned}
$$

Different parenthesizations

Different parenthesizations correspond to different trees:

$\left(A_{1}\left(A_{2}\left(A_{3} A_{4}\right)\right)\right)$

$\left(\left(A_{1} A_{2}\right)\left(A_{3} A_{4}\right)\right)$

$$
\left(A_{1}\left(\left(A_{2} A_{3}\right) A_{4}\right)\right)
$$

$\left(\left(\left(A_{1} A_{2}\right) A_{3}\right) A_{4}\right)$

Number of different parenthesizations

- Let $P(n)$ be the number of alternative parenthesizations of the product $A_{1} \cdot \ldots \cdot A_{n}$:

$$
\begin{aligned}
& P(1)=1 \\
& P(n)=\sum_{k=1}^{n-1} P(k) \cdot P(n-k), \quad \text { for } n \geq 2 \\
& P(n+1)=\frac{1}{n+1}\binom{2 n}{n} \approx \frac{4^{n}}{n \sqrt{\pi n}}+O\left(\frac{4^{n}}{\sqrt{n^{5}}}\right) \\
& P(n+1)=C_{n} \quad\left(n^{\text {th }} \text { Catalan number }\right)
\end{aligned}
$$

- Thus: Exhaustive search needs exponential time!

Multiplying Two Matrices

Algorithm Matrix-Mult
Input: $\quad(p \times q)$ matrix $A,(q \times r)$ matrix B
Output: $(p \times r)$ matrix $C=A \cdot B$
1 for $i:=1$ to p do
2 for $j:=1$ to r do
$3 \quad C[i, j]:=0$;
$4 \quad$ for $k:=1$ to q do
$5 \quad C[i, j]:=C[i, j]+A[i, k] \cdot B[k, j]$
Number of multiplications and additions: $\boldsymbol{p} \cdot \boldsymbol{q} \cdot \boldsymbol{r}$

Matrix-chain multiplication: Example

Computation of the product $A_{1} A_{2} A_{3}$, where
$A_{1}:(\underline{50} \times 5)$ matrix
$A_{2}:(5 \times 100)$ matrix
$A_{3}:(100 \times 10)$ matrix
a) Parenthesization $\left(\left(A_{1} A_{2}\right) A_{3}\right)$ and $\left(A_{1}\left(A_{2} A_{3}\right)\right)$ require:

$$
\begin{array}{ll}
50 \times 100 \\
A^{\prime}=\left(A_{1} A_{2}\right): 50 \cdot 5 \cdot 100=25 \cdot 000 & A^{\prime \prime}=\left(A_{2} A_{3}\right): 5 \cdot 100 \cdot 10=5000 \\
A^{\prime} A_{3}: 50 \cdot 100 \cdot 10=50000 & A_{1} A^{\prime \prime}: 50 \cdot 5 \cdot 10=2^{\prime} 500
\end{array}
$$

Sum: 75'000
7 '500

Structure of an Optimal Parenthesization

For some $\left.1 \leq k<n: \underline{\underline{A_{1} \ldots n}}\right)=\left(\left(A_{1 \ldots k}\right) \cdot\left(A_{k+1 \ldots n}\right)\right)$

- Any optimal solution contains optimal solutions for sub-problems
- Assume matrix $\underline{\underline{A_{i}}}$ is a $\left(d_{i-1} \times d_{i}\right)$-matrix $d_{i-1}^{\prime}\left(\sqrt{A_{1}}\right)$
- Cost to solve sub-problem $A_{\ell} \cdot \ldots \cdot A_{r}, \ell \leq r$ optimally: $C(\ell, r)$

$$
a<b
$$

- Then:

$$
\begin{aligned}
& \underline{C(a, b)}=\min _{a \leq k<b} C(a, k) \\
& C(a(k+1, b)
\end{aligned}+\underbrace{d_{a-1} d_{k} d_{b}}_{\text {cost of last must }} .
$$

Recursive Computation of Opt. Solution

Compute $A_{1} \cdot A_{2} \cdot A_{3} \cdot A_{4} \cdot A_{5}$:

Using Meomization

Compute $A_{1} \cdot A_{2} \cdot A_{3} \cdot A_{4} \cdot A_{5}$:

Compute $A_{1} \cdot \ldots \cdot A_{n}$:

- Each $C(i, j), i<j$ is computed exactly once $\rightarrow O\left(n^{2}\right)$ values
- Each $C(i, j)$ dir. depends on $C(i, k), C(k, j)$ for $i<k<j$

Cost for each $C(i, j): O(n) \rightarrow$ overall time: $\mathbf{O (n ^ { 3 })}$

Remarks about matrix-chain multiplication

1. There is an algorithm that determines an optimal parenthesization in time

$$
O(n \cdot \log n)
$$

2. There is a linear time algorithm that determines a parenthesization using at most

$$
1.155 \cdot C(1, n)
$$

multiplications.

Knapsack NP-hard

- n items $1, \ldots, n$, each item has weight w_{i} and value v_{i}
- Knapsack (bag) of capacity W
- Goal: pack items into knapsack such that total weight is at most W and total value is maximized:

- E.g.: jobs of length w_{i} and value v_{i}, server available for W time units, try to execute a set of jobs that maximizes the total value

Recursive Structure?

- Optimal solution: \mathcal{O}
- If $n \notin \mathcal{O}: \operatorname{OPT}(n)=\underline{\operatorname{OPT}(n-1)}$
- What if $n \in \mathcal{O}$?
- Taking n gives value v_{n}
- But, n also occupies space w_{n} in the bag (knapsack)
- There is space for $W-w_{n}$ total weight left!
$\operatorname{OPT}(n)=v_{n}+$ optimal solution with first $n-1$ items and knapsack of capacity $W-w_{n}$

A More Complicated Recursion
OPT $(\boldsymbol{k}, \boldsymbol{x})$: value of optimal solution with items $1, \ldots, k$ and knapsack of capacity x

OpT($n, w)$
Recursion:

Initialization

$$
\begin{aligned}
& \operatorname{OPT}(0, x)=0 \\
& \operatorname{OPT}(k, 0)=0
\end{aligned}
$$

\# subproblem?
arbitrary weights $=2^{n}$
integer weights: $n \cdot \omega$
assume that weights are integers
\Longrightarrow time: $O(n \cdot w)$

Dynamic Programming Algorithm

Set up table for all possible $\operatorname{OPT}(k, x)$-values

- Assume that all weights w_{i} are integers!

Example

- 8 items: $(3,2),(2,4),(4,1),(5,6),(3,3),(4,3),(5,4),(6,6)$ Knapsack capacity: 12 weight value
- OPT $(k, x)=\max \left\{O P T(k-1, x), O P T\left(k-1, x-w_{k}\right)+v_{k}\right\}$

Running Time of Knapsack Algorithm

- Size of table: $O(n \cdot W)$
- Time per table entry: $O(1) \rightarrow$ overall time: $\boldsymbol{O}(\boldsymbol{n W})$
- Computing solution (set of items to pick): Follow $\leq n$ arrows $\rightarrow O(n)$ time (after filling table)
- Note: Time depends on $W \rightarrow$ can be exponential in n...
- And it is problematic if weights are not integers.

$$
\begin{aligned}
& \text { still possible if wojelts are rational } \\
& \text { another special case: values are int } \\
& - \text { gerent case: NP-hard }
\end{aligned}
$$

$$
\begin{aligned}
& \text { another special case: values are integers } \operatorname{OPT}(k, y)=10
\end{aligned}
$$

String Matching Problems

Edit distance:

- For two given strings A and B, efficiently compute the edit distance $\boldsymbol{D}(\boldsymbol{A}, \boldsymbol{B}) \quad$ (\# edit operations to transform A into B) as well as a minimum sequence of edit operations that transform A into B.
- Example: mathematician \rightarrow multiplication:

Edit Distance

Given: Two strings $A=a_{1} a_{2} \ldots a_{m}$ and $B=b_{1} b_{2} \ldots b_{n}$

Goal: Determine the minimum number $D(A, B)$ of edit operations required to transform A into B

Edit operations:

a) Replace a character from string A by a character from B
b) Delete a character from string A
c) Insert a character from string B into A

$$
\begin{array}{llllllllllll}
m & a & t & e & m & -a & i & c & a & n \\
m & u & t & i & P & i & C & t & i & o & - & n
\end{array} \text { alignment }
$$

Edit Distance - Cost Model

- Cost for replacing character a by $b: c(\boldsymbol{a}, \boldsymbol{b}) \geq \mathbf{0}$
- Capture insert, delete by allowing $a=\varepsilon$ or $b=\varepsilon$:
- Cost for deleting character $a: c(a, \varepsilon)$
- Cost for inserting character $b: c(\varepsilon, b)$

$$
C(a, a)=0
$$

- Triangle inequality:

$$
c(a, c) \leq c(a, b)+c(b, c)
$$

\rightarrow each character is changed at most once!

- Unit cost model: $c(a, b)=\left\{\begin{array}{l}1, \text { if } a \neq b \\ 0, \text { if } a=b\end{array}\right.$

Recursive Structure

- Optimal "alignment" of strings (unit cost model) bbcadfagikccm and abbagflrgikacc:

- Consists of optimal "alignments" of sub-strings, e.g.:

$$
\begin{gathered}
-b b c a g f a \\
\text { abb-adfl }
\end{gathered} \text { and } \begin{aligned}
& \text {-gik-ccm } \\
& \text { rgikacc- }
\end{aligned}
$$

- Edit distance between $A_{1, m}=a_{1} \ldots a_{m}$ and $B_{1, n}=b_{1} \ldots b_{n}$:

$$
D(A, B)=\min _{k, \ell}\left\{D\left(A_{1, k}, B_{1, \ell}\right)+D\left(A_{k+1, m}, B_{\ell+1, n}\right)\right\}
$$

Computation of the Edit Distance $A_{i j} \quad A_{i j}=A_{i}$

Let $A_{k}:=a_{1} \ldots a_{k}, B_{\ell}:=b_{1} \ldots b_{\ell}$, and

$$
D_{k, \ell}:=D\left(\underline{A_{k}}, \underline{B_{\ell}}\right)
$$

Computation of the Edit Distance $D_{k, e}$

Three ways of ending an "alignment" between A_{k} and B_{ℓ} :

1. a_{k} is replaced by b_{ℓ} :

$$
\underline{D_{k, \ell}}=D_{k-1, \ell-1}+\underline{c\left(a_{k}, b_{\ell}\right)}
$$

2. a_{k} is deleted:

$$
\underline{\underline{D_{k, \ell}}}=\underline{\underline{D_{k-1, \ell}}}+c\left(a_{k}, \varepsilon\right)
$$

3. b_{ℓ} is inserted:

$$
\underline{\underline{D_{k, \ell}}}=\underline{\underline{D_{k, \ell-1}}}+c\left(\varepsilon, b_{\ell}\right)
$$

Computing the Edit Distance

- Recurrence relation (for $k, \ell \geq 1$)

$$
\underline{\underline{D_{k, \ell}}}=\min \left\{\begin{array}{l}
\underline{D_{k-1, \ell-1}}+c\left(\underline{\left(a_{k}, b_{\ell}\right)}\right. \\
D_{k-1, \ell}+c\left(a_{k}, \varepsilon\right) \\
D_{k, \ell-1}+c\left(\varepsilon, b_{\ell}\right)
\end{array}\right\}=\min \left\{\begin{array}{l}
D_{k-1, \ell-1}+1 / 0 \\
D_{k-1, \ell}+1 \\
D_{k, \ell-1}+1
\end{array}\right\}
$$

unit cost model

- Need to compute $D_{i, j}$ for all $0 \leq i \leq k, 0 \leq j \leq \ell$:

Recurrence Relation for the Edit Distance

Base cases:

\# subproblems: men

$$
\begin{aligned}
& \boldsymbol{D}_{0,0}=\boldsymbol{D}(\varepsilon, \varepsilon)=\mathbf{0} \\
& \boldsymbol{D}_{\mathbf{0}, \boldsymbol{j}}=\boldsymbol{D}\left(\varepsilon, B_{j}\right)=\boldsymbol{D}_{\mathbf{0}, \boldsymbol{j}-\mathbf{1}}+\boldsymbol{c}\left(\boldsymbol{\varepsilon}, \boldsymbol{b}_{\boldsymbol{j}}\right) \quad \text { time per subpr:: } \theta(1) \\
& \boldsymbol{D}_{\boldsymbol{i}, \mathbf{0}}=\boldsymbol{D}\left(\boldsymbol{A}_{\boldsymbol{i}}, \boldsymbol{\varepsilon}\right)=\boldsymbol{D}_{\boldsymbol{i}-\mathbf{1}, \mathbf{0}}+\boldsymbol{c}\left(\boldsymbol{a}_{\boldsymbol{i}}, \boldsymbol{\varepsilon}\right) \quad \text { overall time: } O(m \cdot n)
\end{aligned}
$$

Recurrence relation:

$$
D_{i, j}=\min \left\{\begin{array}{l}
D_{k-1, \ell-1}+c\left(a_{k}, b_{\ell}\right) \\
D_{k-1, \ell}+c\left(a_{k}, \varepsilon\right) \\
D_{k, \ell-1}+c\left(\varepsilon, b_{\ell}\right)
\end{array}\right\}
$$

Order of solving the subproblems

$b_{1} \quad \begin{array}{llll}b_{2} & b_{3} & b_{4} & \text { prefix of } B \\ & \cdots\end{array}$ b_{n}

Algorithm for Computing the Edit Distance

Algorithm Edit-Distance
Input: 2 strings $A=a_{1} \ldots a_{m}$ and $B=b_{1} \ldots b_{n}$
Output: matrix $D=\left(D_{i j}\right)$
$1 D[0,0]:=0$;
2 for $i:=1$ to m do $D[i, 0]:=i$;
3 for $j:=1$ to n do $D[0, j]:=j$;
4 for $i:=1$ to m do
5 for $j:=1$ to n do
$6 D[i, j]:=\min \left\{\begin{array}{ll}D[i-1, j] & +1 \\ D[i, j-1] & +1 \\ D[i-1, j-1]+c\left(a_{i}, b_{j}\right)\end{array}\right\} ;$

Example

Edit Operations

Edit Operations

Computing the Edit Operations

Algorithm Edit-Operations(i,j)
Input: matrix D (already computed)
Output: list of edit operations
1 if $i=0$ and $j=0$ then return empty list
2 if $i \neq 0$ and $D[i, j]=D[i-1, j]+1$ then
3 return Edit-Operations $(i-1, j) \circ$,delete $a_{i}{ }^{\prime}$
4 else if $j \neq 0$ and $D[i, j]=D[i, j-1]+1$ then return Edit-Operations $(i, j-1) \circ$, insert $b_{j}{ }^{\prime \prime}$

6 else $/ / D[i, j]=D[i-1, j-1]+c\left(a_{i}, b_{j}\right)$
7 if $a_{i}=b_{i}$ then return Edit-Operations $(i-1, j-1)$
8 else return Edit-Operations $(i-1, j-1) \circ$ „replace a_{i} by $b_{j}{ }^{\prime \prime}$
Initial call: Edit-Operations(m,n)

Edit Distance: Summary

- Edit distance between two strings of length m and n can be computed in $O(\mathrm{mn})$ time.
- Obtain the edit operations:
- for each cell, store which rule(s) apply to fill the cell
- track path backwards from cell (m, n)
- can also be used to get all optimal "alignments"
- Unit cost model:
- interesting special case
- each edit operation costs 1

Approximate String Matching

Given: strings $T=t_{1} t_{2} \ldots t_{n}$ (text) and $P=p_{1} p_{2} \ldots p_{m}$ (pattern).

Goal: Find an interval $[r, s], 1 \leq r \leq s \leq n$ such that the sub-string $T_{r, s}:=t_{r} \ldots t_{s}$ is the one with highest similarity to the pattern P :

$$
\underset{1 \leq r \leq s \leq n}{\arg \min } D\left(\underline{T_{r, s}}, \underline{P}\right)
$$

Approximate String Matching

Naive Solution:

for all $1 \leq r \leq s \leq n$ do
compute $D\left(T_{r, s}, P\right) \quad$ Greall: $O\left(m \cdot n^{3}\right)$
choose the minimum $\cos t((s-r) \cdot m)=O(m \cdot n)$

Approximate String Matching

A related problem:

- For each position s in the text and each position i in the pattern compute the minimum edit distance $E(i, s)$ between $P_{i}=p_{1} \ldots p_{i}$ and any substring $T_{r, s}$ of T that ends at position s.

Approximate String Matching

Three ways of ending optimal alignment between $\underline{\underline{T}}_{\underline{b}}$ and P_{i} :

1. t_{b} is replaced by p_{i} :

$$
E_{b, i}=\underline{E_{b-1, i-1}}+c\left(t_{b}, p_{i}\right)
$$

2. t_{b} is deleted:

$$
E_{b, i}=E_{b-1, i}+c\left(t_{b}, \varepsilon\right)
$$

3. p_{i} is inserted:

$$
E_{b, i}=\underline{\underline{E_{b, i-1}}}+c\left(\varepsilon, p_{i}\right)
$$

Approximate String Matching

Recurrence relation (unit cost model):

$$
\boldsymbol{E}_{\boldsymbol{b}, \boldsymbol{i}}=\min \left\{\begin{array}{l}
\boldsymbol{E}_{\boldsymbol{b}-\mathbf{1}, \boldsymbol{i}-1}+\mathbf{1} \\
\boldsymbol{E}_{\boldsymbol{b}-\mathbf{1}, \boldsymbol{i}}+\mathbf{1} \\
\boldsymbol{E}_{\boldsymbol{b}, \boldsymbol{i}-1}+\mathbf{1}
\end{array}\right\}
$$

Base cases:

$$
\begin{aligned}
E_{0,0} & =\mathbf{0} \\
E_{0, i} & =\boldsymbol{i} \\
E_{i, 0} & =0
\end{aligned}
$$

Example

Approximate String Matching

- Optimal matching consists of optimal sub-matchings
- Optimal matching can be computed in $O(m n)$ time
- Get matching(s):
- Start from minimum entry/entries in bottom row
- Follow path(s) to top row
- Algorithm to compute $E(b, i)$ identical to edit distance algorithm, except for the initialization of $E(b, 0)$

Related Problems in Bioinformatics

Sequence Alignment:

Find optimal alignment of two given DNA, RNA, or amino acid sequences.

$$
\begin{aligned}
& G A-C G G A T A G \\
& G A T C G G A A T-G
\end{aligned}
$$

Global vs. Local Alignment:

- Global alignment: find optimal alignment of 2 sequences
- Local alignment: find optimal alignment of sequence 1 (patter) with sub-sequence of sequence 2 (text)

