

Chapter 3 Dynamic Programming

Algorithm Theory WS 2017/18

Fabian Kuhn

 $\text{DP} \approx \text{Recursion} + \text{Memoization}$

Recursion: Express problem *recursively* in terms of (a <u>'small</u>' number of) *subproblems* (of the same kind)

Memoize: Store solutions for subproblems reuse the stored solutions if the same subproblems has to be solved again

Weighted interval scheduling: subproblems W(1), W(2), W(3), ...

runtime = #subproblems · time per subproblem

"Memoization" for increasing the efficiency of a recursive solution:

• Only the *first time* a sub-problem is encountered, its solution is computed and then stored in a table. Each subsequent time that the subproblem is encountered, the value stored in the table is simply looked up and returned

(without repeated computation!).

• *Computing the solution*: For each sub-problem, store how the value is obtained (according to which recursive rule).

Dynamic Programming

Dynamic programming / memoization can be applied if

- Optimal solution contains optimal solutions to sub-problems (recursive structure)
- Number of sub-problems that need to be considered is small

Matrix-chain multiplication

FREIBURG

 $(A, A_2) (A_3, A_4)$

Given: sequence (chain) $\langle A_1, A_2, ..., A_n \rangle$ of matrices

Goal: compute the product $A_1 \cdot A_2 \cdot \ldots \cdot A_n$

Problem: Parenthesize the product in a way that minimizes the number of scalar multiplications.

Definition: A product of matrices is *fully parenthesized* if it is

- a single matrix
- or the product of two fully parenthesized matrix products, surrounded by parentheses.

Example

All possible fully parenthesized matrix products of the chain $\langle A_1, A_2, A_3, A_4 \rangle$:

 $(A_1(A_2(A_3A_4))))$

 $(\,A_1(\,(\,A_2A_3)\,A_4\,)\,)$

 $(\,(\,A_1A_2\,)(\,A_3A_4\,)\,)$

 $((A_1(A_2A_3))A_4)$

 $(((A_1A_2)A_3)A_4)$

Algorithm Theory, WS 2017/18

Different parenthesizations

FREIBURG

Different parenthesizations correspond to different trees:

Number of different parenthesizations

 Let P(n) be the number of alternative parenthesizations of the product A₁ · ... · A_n:

$$P(1) = 1$$

$$P(n) = \sum_{k=1}^{n-1} P(k) \cdot P(n-k), \quad \text{for } n \ge 2$$

$$P(n+1) = \frac{1}{n+1} {2n \choose n} \approx \frac{4^n}{n\sqrt{\pi n}} + O\left(\frac{4^n}{\sqrt{n^5}}\right)$$

$$P(n+1) = C_n \qquad (n^{th} \text{ Catalan number})$$

• Thus: Exhaustive search needs exponential time!

UNI FREIBURG

Multiplying Two Matrices

$$A = (a_{ij})_{\underline{p \times q}}, \qquad B = (b_{ij})_{\underline{q \times r}}, \qquad A \cdot B = C = (c_{ij})_{p \times r}$$

Algorithm Matrix-Mult Input: $(p \times q)$ matrix A, $(q \times r)$ matrix BOutput: $(p \times r)$ matrix $C = A \cdot B$ 1 for $i \coloneqq 1$ to p do 2 for $j \coloneqq 1$ to r do 3 $C[i, j] \coloneqq 0;$ 4 for $k \coloneqq 1$ to q do 5 $C[i, j] \coloneqq C[i, j] + A[i, k] \cdot B[k, j]$

Remark:

Using this algorithm, multiplying two $(n \times n)$ matrices requires n^3 multiplications. This can also be done using $O(n^{2.373})$ multiplications.

Number of multiplications and additions: $p \cdot q \cdot r$

Algorithm Theory, WS 2017/18

Matrix-chain multiplication: Example

INN

Computation of the product $A_1 A_2 A_3$, where

- A_1 : (50 × 5) matrix
- A_2 : (5 × 100) matrix A_3 : (100 × 10) matrix

a) Parenthesization $((A_1A_2)A_3)$ and $(A_1(A_2A_3))$ require:

5×10 30×100 $A' = (A_1 A_2): 50.5.100 = 25.000 \quad A'' = (A_2 A_3): 5.100.10 = 5.000$

 $A'A_3$: 50.100.10 = 50000 $A_1 A'': So \cdot S \cdot 10 = 2' Soo$

Sum: 75'000

7'500

Fabian Kuhn

Structure of an Optimal Parenthesization

- $(A_{\ell \dots r})$: optimal parenthesization of $A_{\ell} \cdot \dots \cdot A_{r} \xrightarrow{\#subproblems : O(n^{2})}$ For some $1 \le k < n$: $(A_{1\dots n}) = ((A_{1\dots k}) \cdot (A_{k+1\dots n}))$
- Any optimal solution contains optimal solutions for sub-problems
- Assume matrix $\underline{A_i}$ is a $(d_{i-1} \times d_i)$ -matrix $\frac{1}{4} \stackrel{\frown}{} \stackrel{\frown}{} \stackrel{\frown}{} A_i$
- Cost to solve sub-problem $A_{\ell} \cdot \dots \cdot A_{r}, \ell \leq r$ optimally: $\underbrace{C(\ell, r)}_{q < b}$
- Then: $C(a,b) = \min_{\substack{a \le k < b}} C(a,k) + C(k+1,b) + \frac{d_{a-1}d_kd_b}{cost of (ast mult)}$ C(a,a) = 0

C(1,n)?

Recursive Computation of Opt. Solution

Using Meomization

FREIBURG

Compute $A_1 \cdot A_2 \cdot A_3 \cdot A_4 \cdot A_5$:

Compute $A_1 \cdot \ldots \cdot A_n$:

- Each C(i, j), i < j is computed exactly once $\rightarrow O(n^2)$ values
- Each C(i, j) dir. depends on C(i, k), C(k, j) for i < k < j

Cost for each $C(i,j): O(n) \rightarrow$ overall time: $O(n^3)$

Algorithm Theory, WS 2017/18

Fabian Kuhn

Remarks about matrix-chain multiplication

1. There is an algorithm that determines an optimal parenthesization in time

 $O(n \cdot \log n).$

2. There is a linear time algorithm that determines a parenthesization using at most

 $1.155 \cdot C(1, n)$

multiplications.

UNI

Knapsack MP-hard

- *n* items 1, ..., *n*, each item has weight w_i and value v_i
- Knapsack (bag) of capacity W
- Goal: pack items into knapsack such that total weight is at most *W* and total value is maximized:

$$\max \sum_{i \in S} v_i$$

s.t. $S \subseteq \{1, ..., n\}$ and $\sum_{i \in S} w_i \le W$

E.g.: jobs of length w_i and value v_i, server available for W time units, try to execute a set of jobs that maximizes the total value

Recursive Structure?

- Optimal solution: \mathcal{O}
- If $n \notin \mathcal{O}$: OPT(n) = OPT(n-1)
- What if $n \in \mathcal{O}$?
 - Taking n gives value v_n
 - But, n also occupies space w_n in the bag (knapsack)
 - There is space for $W w_n$ total weight left!

 $OPT(n) = v_n + optimal solution with first n - 1 items$ and knapsack of capacity $W - w_n$

A More Complicated Recursion

OPT
$$(k, x)$$
: value of optimal solution with items 1, ..., k
and knapsack of capacity x
OPT (u, W)
Recursion:
 $OPT(k, x) = max \begin{cases} OPT(k-1, x), V_k + OPT(k-1, x-w_k) \end{cases}$
 $\int_{0}^{L} set. utan ust}$
 $using item k$
Initialization
 $OPT(0, x) = 0$
 $\int_{0}^{H} subproblems ?
 $arbitrary weights = 2^n$
 $integer weights : n W$
 $assume that weights are integers$
 $\longrightarrow druce: O(n.W)$$

Dynamic Programming Algorithm

FREBURG

Set up table for all possible OPT(k, x)-values

• Assume that all weights w_i are integers!

Example

 8 items: (3,2), (2,4), (4,1), (5,6), (3,3), (4,3), (5,4), (6,6)
 Knapsack capacity: 12 weight value • $OPT(k, x) = \max\{OPT(k-1, x), OPT(k-1, x-w_k) + v_k\}$ <u>√1</u> 2⁺¹ 4 5 6 7 8 9 10 11 12 2+4 О °6

Running Time of Knapsack Algorithm

- Size of table: $O(n \cdot W)$
- Time per table entry: $O(1) \rightarrow$ overall time: O(nW)
- Computing solution (set of items to pick): Follow $\leq n$ arrows $\rightarrow O(n)$ time (after filling table)
- Note: Time depends on $W \rightarrow$ can be exponential in n...
- And it is problematic if weights are not integers.

still possible if weights are values are integers OPT(k,y) - general case: NP-hard

Edit distance:

- For two given strings <u>A</u> and <u>B</u>, efficiently compute the edit distance D(A, B) (# edit operations to transform A into B) as well as a minimum sequence of edit operations that transform A into B.
- **Example:** mathematician \rightarrow multiplication:

Given: Two strings
$$A = a_1 a_2 \dots a_m$$
 and $B = b_1 b_2 \dots b_n$

Goal: Determine the minimum number D(A, B) of edit operations required to transform A into B

Edit operations:

- a) **Replace** a character from string *A* by a character from *B*
- **b) Delete** a character from string *A*
- c) Insert a character from string *B* into *A*

Edit Distance – Cost Model

- Cost for **replacing** character a by $b: c(a, b) \ge 0$
- Capture insert, delete by allowing $a = \varepsilon$ or $b = \varepsilon$:
 - Cost for **deleting** character $a: c(a, \varepsilon)$
 - Cost for **inserting** character $b: c(\varepsilon, b)$

C(q,q) = 0

• Triangle inequality:

 $c(a,c) \le c(a,b) + c(b,c)$

 \rightarrow each character is changed at most once!

• Unit cost model:
$$c(a,b) = \begin{cases} 1, & \text{if } a \neq b \\ 0, & \text{if } a = b \end{cases}$$

Recursive Structure

• Optimal "alignment" of strings (unit cost model) bbcadfagikccm and abbagflrgikacc:

- Consists of optimal "alignments" of sub-strings, e.g.: -bbcagfa abb-adfl and -gik-ccm rgikacc-A
- Edit distance between $A_{1,m} = a_1 \dots a_m$ and $B_{1,n} = b_1 \dots b_n$:

$$D(A,B) = \min_{k,\ell} \{ D(A_{1,k}, B_{1,\ell}) + D(A_{k+1,m}, B_{\ell+1,n}) \}$$

Computation of the Edit Distance $A_{i,j} = A_{i,j}$

Let
$$A_k \coloneqq a_1 \dots a_k$$
, $B_\ell \coloneqq b_1 \dots b_\ell$, and
 $D_{k,\ell} \coloneqq D(A_k, B_\ell)$

UNI FREIBURG

Computation of the Edit Distance $\mathcal{D}_{k,e}$

Three ways of ending an "alignment" between A_k and B_ℓ :

Fabian Kuhn

1.
$$a_k$$
 is replaced by b_ℓ :

$$D_{k,\ell} = D_{k-1,\ell-1} + \underline{c(a_k, b_\ell)}$$

2. a_k is deleted:

$$\underline{\underline{D}_{k,\ell}} = \underline{\underline{D}_{k-1,\ell}} + c(a_k,\varepsilon)$$

3. b_{ℓ} is inserted:

$$\underline{D_{k,\ell}} = \underline{D_{k,\ell-1}} + c(\varepsilon, b_\ell)$$

ak

A

AL-1

Be

Computing the Edit Distance

 $i a_k = b_k$

• Recurrence relation (for $k, \ell \geq 1$)

$$D_{k,\ell} = \min \left\{ \begin{array}{l} D_{k-1,\ell-1} + c(a_k, b_\ell) \\ D_{k-1,\ell} + c(a_k, \varepsilon) \\ D_{k,\ell-1} + c(\varepsilon, b_\ell) \end{array} \right\} = \min \left\{ \begin{array}{l} D_{k-1,\ell-1} + 1 \ D_{k-1,\ell} + 1 \\ D_{k,\ell-1} + 1 \end{array} \right\}$$
unit cost model

• Need to compute $D_{i,j}$ for all $0 \le i \le k$, $0 \le j \le \ell$:

Algorithm Theory, WS 2017/18

Recurrence Relation for the Edit Distance

subproblems! M.n.

Base cases:

$$D_{0,0} = D(\varepsilon, \varepsilon) = 0$$

$$D_{0,j} = D(\varepsilon, B_j) = D_{0,j-1} + c(\varepsilon, b_j)$$

$$D_{i,0} = D(A_i, \varepsilon) = D_{i-1,0} + c(a_i, \varepsilon)$$

Overall time : $O(i)$

Recurrence relation:

$$D_{i,j} = \min \begin{cases} D_{k-1,\ell-1} + c(a_k, b_\ell) \\ D_{k-1,\ell} + c(a_k, \varepsilon) \\ D_{k,\ell-1} + c(\varepsilon, b_\ell) \end{cases}$$

Order of solving the subproblems

Algorithm Theory, WS 2017/18

Fabian Kuhn

Algorithm for Computing the Edit Distance

Algorithm *Edit-Distance* **Input:** 2 strings $A = a_1 \dots a_m$ and $B = b_1 \dots b_n$ **Output:** matrix $D = (D_{ii})$ 1 D[0,0] = 0;2 for $i \coloneqq 1$ to m do $D[i, 0] \coloneqq i$; 3 for $j \coloneqq 1$ to n do $D[0, j] \coloneqq j$; 4 for $i \coloneqq 1$ to m do 5 for $i \coloneqq 1$ to n do 6 $D[i,j] \coloneqq \min \begin{cases} D[i-1,j] + 1 \\ D[i,j-1] + 1 \\ D[i-1,j-1] + c(a_i,b_j) \end{cases};$

Example

Edit Operations

Edit Operations

Computing the Edit Operations

Algorithm Edit-Operations(i, j) Input: matrix D (already computed) Output: list of edit operations

- 1 if i = 0 and j = 0 then return empty list
- 2 if $i \neq 0$ and D[i, j] = D[i 1, j] + 1 then
- 3 **return** *Edit-Operations* $(i 1, j) \circ$ "delete a_i "
- 4 else if $j \neq 0$ and D[i, j] = D[i, j 1] + 1 then
- 5 **return** *Edit-Operations*(i, j 1) ° "insert b_j "
- 6 else // $D[i,j] = D[i-1,j-1] + c(a_i,b_j)$
- 7 **if** $a_i = b_i$ **then return** *Edit-Operations*(i 1, j 1)
- 8 else return *Edit-Operations* $(i 1, j 1) \circ$ "replace a_i by b_j "

Initial call: *Edit-Operations(m,n)*

Edit Distance: Summary

- FREBURG
- Edit distance between two strings of length m and n can be computed in O(mn) time.
- Obtain the edit operations:
 - for each cell, store which rule(s) apply to fill the cell
 - track path backwards from cell (m, n)
 - can also be used to get all optimal "alignments"
- Unit cost model:
 - interesting special case
 - each edit operation costs 1

Approximate String Matching

Given: strings $T = t_1 t_2 \dots t_n$ (text) and $P = p_1 p_2 \dots p_m$ (pattern).

Goal: Find an interval [r, s], $1 \le r \le s \le n$ such that the sub-string $T_{r,s} \coloneqq t_r \dots t_s$ is the one with highest similarity to the pattern P:

HREBURG

Naive Solution:

for all $1 \le r \le s \le n$ do compute $D(T_{r,s}, P)$ choose the minimum $Cost((S-r) \cdot m) = O(m \cdot n)$

A related problem:

• For each position s in the text and each position i in the pattern compute the minimum edit distance E(i,s) between $P_i = p_1 \dots p_i$ and any substring $T_{r,s}$ of T that ends at position s.

Approximate String Matching

Three ways of ending optimal alignment between T_b and P_i : t_h is replaced by p_i : 1. $E_{b,i} = E_{b-1,i-1} + c(t_b, p_i)$ 2. t_h is deleted: $E_{b,i} = E_{b-1,i} + c(t_b, \varepsilon)$ p_i is inserted: 3. $E_{b,i} = E_{b,i-1} + c(\varepsilon, p_i)$ Pi

Approximate String Matching

Recurrence relation (unit cost model):

$$E_{b,i} = \min \begin{cases} E_{b-1,i-1} + 1 \\ E_{b-1,i} + 1 \\ E_{b,i-1} + 1 \end{cases}$$

Base cases:

$$E_{0,0} = 0$$

 $E_{0,i} = i$
 $E_{i,0} = 0$

P;

Example

Approximate String Matching

FREIBURG

- Optimal matching consists of optimal sub-matchings
- Optimal matching can be computed in O(mn) time
- Get matching(s):
 - Start from minimum entry/entries in bottom row
 - Follow path(s) to top row
- Algorithm to compute E(b, i) identical to edit distance algorithm, except for the initialization of E(b, 0)

Sequence Alignment:

Find optimal alignment of two given DNA, RNA, or amino acid sequences.

Global vs. Local Alignment:

- *Global alignment*: find optimal alignment of 2 sequences
- Local alignment: find optimal alignment of sequence 1 (patter) with sub-sequence of sequence 2 (text)