
Chapter 3

Dynamic Programming

Algorithm Theory
WS 2017/18

Fabian Kuhn

Algorithm Theory, WS 2017/18 Fabian Kuhn 2

Recursion: Express problem recursively in terms of
(a ‘small’ number of) subproblems (of the same kind)

Memoize: Store solutions for subproblems
reuse the stored solutions if the same subproblems
has to be solved again

Weighted interval scheduling: subproblems 𝑊 1 ,𝑊 2 ,𝑊 3 ,…

runtime = #subproblems ⋅ time per subproblem

2

Dynamic Programming (DP)

DP ≈ Recursion + Memoization

Algorithm Theory, WS 2017/18 Fabian Kuhn 3

„Memoization“ for increasing the efficiency of a recursive solution:

• Only the first time a sub-problem is encountered, its solution is
computed and then stored in a table. Each subsequent time that
the subproblem is encountered, the value stored in the table is
simply looked up and returned

(without repeated computation!).

• Computing the solution: For each sub-problem, store how the
value is obtained (according to which recursive rule).

Dynamic Programming

Algorithm Theory, WS 2017/18 Fabian Kuhn 4

Dynamic Programming

Dynamic programming / memoization can be applied if

• Optimal solution contains optimal solutions to sub-problems
(recursive structure)

• Number of sub-problems that need to be considered is small

Algorithm Theory, WS 2017/18 Fabian Kuhn 5

Matrix-chain multiplication

Given: sequence (chain) 𝐴1, 𝐴2, … , 𝐴𝑛 of matrices

Goal: compute the product 𝐴1 𝐴2 … 𝐴𝑛

Problem: Parenthesize the product in a way that minimizes
the number of scalar multiplications.

Definition: A product of matrices is fully parenthesized if it is

• a single matrix

• or the product of two fully parenthesized matrix products,
surrounded by parentheses.

Algorithm Theory, WS 2017/18 Fabian Kuhn 6

All possible fully parenthesized matrix products of the chain
𝐴1, 𝐴2, 𝐴3, 𝐴4:

(𝐴1 (𝐴2 (𝐴3𝐴4)))

(𝐴1 ((𝐴2𝐴3) 𝐴4))

((𝐴1𝐴2)(𝐴3𝐴4))

((𝐴1 (𝐴2𝐴3)) 𝐴4)

(((𝐴1𝐴2)𝐴3) 𝐴4)

Example

Algorithm Theory, WS 2017/18 Fabian Kuhn 7

Different parenthesizations

Different parenthesizations correspond to different trees:

𝐴1 𝐴2 𝐴3𝐴4

𝐴1 𝐴2𝐴3 𝐴4

𝐴1𝐴2 𝐴3𝐴4

𝐴1𝐴2 𝐴3 𝐴4

Algorithm Theory, WS 2017/18 Fabian Kuhn 8

Number of different parenthesizations

• Let 𝑃(𝑛) be the number of alternative parenthesizations of
the product 𝐴1 ⋅ … ⋅ 𝐴𝑛:

•

𝑃 1 = 1

𝑃 𝑛 =

𝑘=1

𝑛−1

𝑃 𝑘 ⋅ 𝑃(𝑛 − 𝑘) , for 𝑛 ≥ 2

𝑃 𝑛 + 1 =
1

𝑛 + 1
2𝑛
𝑛

≈
4𝑛

𝑛 𝜋𝑛
+ 𝑂

4𝑛

𝑛5

𝑃 𝑛 + 1 = 𝐶𝑛 (𝑛𝑡ℎ Catalan number)

• Thus: Exhaustive search needs exponential time!

Algorithm Theory, WS 2017/18 Fabian Kuhn 9

Multiplying Two Matrices

𝐴 = 𝑎𝑖𝑗 𝑝×𝑞
, 𝐵 = 𝑏𝑖𝑗 𝑞×𝑟

, 𝐴 ⋅ 𝐵 = 𝐶 = 𝑐𝑖𝑗 𝑝×𝑟

𝑐𝑖𝑗 =

𝑘=1

𝑞

𝑎𝑖𝑘𝑏𝑘𝑗

Algorithm Matrix-Mult

Input: (𝑝 × 𝑞) matrix 𝐴, 𝑞 × 𝑟 matrix 𝐵

Output: (𝑝 × 𝑟) matrix 𝐶 = 𝐴 ⋅ 𝐵
1 for 𝑖 ≔ 1 to 𝑝 do
2 for 𝑗 ≔ 1 to 𝑟 do
3 𝐶 𝑖, 𝑗 ≔ 0;
4 for 𝑘 ≔ 1 to 𝑞 do
5 𝐶 𝑖, 𝑗 ≔ 𝐶 𝑖, 𝑗 + 𝐴 𝑖, 𝑘 ⋅ 𝐵[𝑘, 𝑗]

Number of multiplications and additions: 𝒑 𝒒 𝒓

Remark:

Using this algorithm, multiplying
two (𝑛 𝑛) matrices requires 𝑛3

multiplications. This can also be
done using 𝑂(𝑛2.373)
multiplications.

Algorithm Theory, WS 2017/18 Fabian Kuhn 10

Matrix-chain multiplication: Example

Computation of the product 𝐴1𝐴2𝐴3 , where

𝐴1 : (50 5) matrix

𝐴2 : (5 100) matrix

𝐴3 : (100 10) matrix

a) Parenthesization ((𝐴1𝐴2)𝐴3) and 𝐴1 𝐴2𝐴3 require:

𝐴′ = (𝐴1𝐴2): 𝐴
′′ = (𝐴2𝐴3):

𝐴′𝐴3: 𝐴1𝐴′′:

Sum:

Algorithm Theory, WS 2017/18 Fabian Kuhn 11

Structure of an Optimal Parenthesization

• (𝐴ℓ…𝑟): optimal parenthesization of 𝐴ℓ ⋅ … ⋅ 𝐴𝑟

For some 1 ≤ 𝑘 < 𝑛: 𝑨𝟏…𝒏 = 𝑨𝟏…𝒌 ⋅ 𝑨𝒌+𝟏…𝒏

• Any optimal solution contains optimal solutions for sub-problems

• Assume matrix 𝐴𝑖 is a 𝑑𝑖−1 × 𝑑𝑖 -matrix

• Cost to solve sub-problem 𝐴ℓ ⋅ … ⋅ 𝐴𝑟 , ℓ ≤ 𝑟 optimally: 𝐶(ℓ, 𝑟)

• Then:
𝑪 𝒂, 𝒃 = 𝒎𝒊𝒏

𝒂≤𝒌<𝒃
𝑪 𝒂, 𝒌 + 𝑪 𝒌 + 𝟏, 𝒃 + 𝒅𝒂−𝟏𝒅𝒌 𝒅𝒃

𝑪 𝒂, 𝒂 = 𝟎

Algorithm Theory, WS 2017/18 Fabian Kuhn 12

Recursive Computation of Opt. Solution

Compute 𝐴1 ⋅ 𝐴2 ⋅ 𝐴3 ⋅ 𝐴4 ⋅ 𝐴5:

𝐶(1,5)

𝐶(1,2) 𝐶(1,3) 𝐶(1,4) 𝐶(2,5)

𝐶(2,3)𝐶(1,2)

𝐶(3,5) 𝐶(4,5)

𝐶(1,3)𝐶(1,2) 𝐶(2,4)𝐶(2,3) 𝐶(2,3)𝐶(2,4) 𝐶(4,5)𝐶(3,5)

𝐶(4,5)𝐶(3,4)

𝐶(2,3)𝐶(1,2) 𝐶(3,4)𝐶(2,3) 𝐶(3,4)𝐶(2,3) 𝐶(4,5)𝐶(3,4)

Algorithm Theory, WS 2017/18 Fabian Kuhn 13

Using Meomization

Compute 𝐴1 ⋅ 𝐴2 ⋅ 𝐴3 ⋅ 𝐴4 ⋅ 𝐴5:

Compute 𝐴1 ⋅ … ⋅ 𝐴𝑛:

• Each 𝐶(𝑖, 𝑗), 𝑖 < 𝑗 is computed exactly once 𝑂 𝑛2 values

• Each 𝐶(𝑖, 𝑗) dir. depends on 𝐶(𝑖, 𝑘), 𝐶(𝑘, 𝑗) for 𝑖 < 𝑘 < 𝑗

Cost for each 𝐶(𝑖, 𝑗): 𝑂(𝑛) overall time: 𝑶 𝒏𝟑

𝐶(1,2) 𝐶(2,3) 𝐶(3,4) 𝐶(4,5)

𝐶(1,3) 𝐶(2,4) 𝐶(3,5)

𝐶(1,4) 𝐶(2,5)

𝐶(1,5)

Algorithm Theory, WS 2017/18 Fabian Kuhn 14

Remarks about matrix-chain multiplication

1. There is an algorithm that determines an optimal
parenthesization in time

𝑂 𝑛 ⋅ log 𝑛 .

2. There is a linear time algorithm that determines a
parenthesization using at most

1.155 ⋅ 𝐶(1, 𝑛)

multiplications.

Algorithm Theory, WS 2017/18 Fabian Kuhn 15

Knapsack

• 𝑛 items 1,… , 𝑛, each item has weight 𝑤𝑖 and value 𝑣𝑖
• Knapsack (bag) of capacity 𝑊

• Goal: pack items into knapsack such that total weight is at
most 𝑊 and total value is maximized:

max

𝑖∈𝑆

𝑣𝑖

s. t. 𝑆 ⊆ 1,… , 𝑛 and

𝑖∈𝑆

𝑤𝑖 ≤ 𝑊

• E.g.: jobs of length 𝑤𝑖 and value 𝑣𝑖, server available for 𝑊
time units, try to execute a set of jobs that maximizes the
total value

Algorithm Theory, WS 2017/18 Fabian Kuhn 16

Recursive Structure?

• Optimal solution: 𝒪

• If 𝑛 ∉ 𝒪: OPT 𝑛 = OPT 𝑛 − 1

• What if 𝑛 ∈ 𝒪?
– Taking 𝑛 gives value 𝑣𝑛
– But, 𝑛 also occupies space 𝑤𝑛 in the bag (knapsack)

– There is space for 𝑊 −𝑤𝑛 total weight left!

OPT 𝑛 = 𝑣𝑛 + optimal solution with first 𝑛 − 1 items
and knapsack of capacity 𝑊 − 𝑤𝑛

Algorithm Theory, WS 2017/18 Fabian Kuhn 17

A More Complicated Recursion

𝐎𝐏𝐓(𝒌, 𝒙): value of optimal solution with items 1,… , 𝑘
and knapsack of capacity 𝑥

Recursion:

Algorithm Theory, WS 2017/18 Fabian Kuhn 18

Dynamic Programming Algorithm

Set up table for all possible OPT(𝑘, 𝑥)-values

• Assume that all weights 𝑤𝑖 are integers!

𝟎

𝟏

𝟐

⋮

𝒏

𝟎 𝟏 𝟐 ⋮ 𝑾
Row 𝒊, column 𝒋:

𝑶𝑷𝑻(𝒊, 𝒋)

𝟑

𝟑

Algorithm Theory, WS 2017/18 Fabian Kuhn 19

Example

• 8 items: 3,2 , 2,4 , 4,1 , 5,6 , 3,3 , 4,3 , 5, 4 , 6,6
Knapsack capacity: 12

• 𝑶𝑷𝑻 𝒌, 𝒙 = 𝐦𝐚𝐱 𝑶𝑷𝑻 𝒌 − 𝟏, 𝒙 , 𝑶𝑷𝑻 𝒌 − 𝟏, 𝒙 − 𝒘𝒌 + 𝒗𝒌

weight value

𝟏

𝟐

𝟑

𝟖

𝟏 𝟐 𝟑 𝟏𝟐𝟒 𝟓 𝟔 𝟕 𝟖 𝟗 𝟏𝟎 𝟏𝟏

𝟒

𝟓

𝟔

𝟕

Algorithm Theory, WS 2017/18 Fabian Kuhn 20

Running Time of Knapsack Algorithm

• Size of table: 𝑂(𝑛 ⋅ 𝑊)

• Time per table entry: 𝑂(1) overall time: 𝑶(𝒏𝑾)

• Computing solution (set of items to pick):
Follow ≤ 𝑛 arrows 𝑂 𝑛 time (after filling table)

• Note: Time depends on 𝑊 can be exponential in 𝑛…

• And it is problematic if weights are not integers.

Algorithm Theory, WS 2017/18 Fabian Kuhn 21

m a t h e m a t i c i a n

String Matching Problems

Edit distance:

• For two given strings 𝐴 and 𝐵, efficiently compute the

edit distance 𝑫(𝑨,𝑩) (# edit operations to transform 𝐴 into 𝐵)

as well as a minimum sequence of edit operations that
transform 𝐴 into 𝐵.

• Example: mathematician multiplication:

u i p l o

l i c

Algorithm Theory, WS 2017/18 Fabian Kuhn 23

Edit Distance

Given: Two strings 𝐴 = 𝑎1𝑎2…𝑎𝑚 and 𝐵 = 𝑏1𝑏2…𝑏𝑛

Goal: Determine the minimum number 𝐷(𝐴, 𝐵) of edit
operations required to transform 𝐴 into 𝐵

Edit operations:

a) Replace a character from string 𝐴 by a character from 𝐵

b) Delete a character from string 𝐴

c) Insert a character from string 𝐵 into 𝐴

m a – t h e m - - a t i c i a n

m u l t i p l i c a t i o - - n

Algorithm Theory, WS 2017/18 Fabian Kuhn 24

Edit Distance – Cost Model

• Cost for replacing character 𝑎 by 𝑏: 𝒄 𝒂, 𝒃 ≥ 𝟎

• Capture insert, delete by allowing 𝑎 = 𝜀 or 𝑏 = 𝜀:
– Cost for deleting character 𝑎: 𝒄(𝒂, 𝜺)

– Cost for inserting character 𝑏: 𝒄(𝜺, 𝒃)

• Triangle inequality:

𝑐 𝑎, 𝑐 ≤ 𝑐 𝑎, 𝑏 + 𝑐 𝑏, 𝑐

 each character is changed at most once!

• Unit cost model: 𝑐 𝑎, 𝑏 = ቊ
1, if 𝑎 ≠ 𝑏
0, if 𝑎 = 𝑏

Algorithm Theory, WS 2017/18 Fabian Kuhn 25

Recursive Structure

• Optimal “alignment” of strings (unit cost model)

bbcadfagikccm and abbagflrgikacc :

- b b c a g f a – g i k - c c m

a b b – a d f l r g i k a c c –

• Consists of optimal “alignments” of sub-strings, e.g.:
-bbcagfa –gik-ccm

abb-adfl rgikacc-

• Edit distance between 𝐴1,𝑚 = 𝑎1…𝑎𝑚 and 𝐵1,𝑛 = 𝑏1…𝑏𝑛:

𝐷 𝐴, 𝐵 = min
𝑘,ℓ

𝐷 𝐴1,𝑘 , 𝐵1,ℓ + 𝐷 𝐴𝑘+1,𝑚, 𝐵ℓ+1,𝑛

and

Algorithm Theory, WS 2017/18 Fabian Kuhn 26

Computation of the Edit Distance

Let 𝐴𝑘 ≔ 𝑎1…𝑎𝑘 , 𝐵ℓ ≔ 𝑏1…𝑏ℓ , and

𝐷𝑘,ℓ ≔ 𝐷 𝐴𝑘 , 𝐵ℓ

𝐴

𝐵

Algorithm Theory, WS 2017/18 Fabian Kuhn 27

Computation of the Edit Distance

Three ways of ending an “alignment” between 𝐴𝑘 and 𝐵ℓ:

1. 𝑎𝑘 is replaced by 𝑏ℓ:

𝐷𝑘,ℓ = 𝐷𝑘−1,ℓ−1 + 𝑐 𝑎𝑘 , 𝑏ℓ

2. 𝑎𝑘 is deleted:

𝐷𝑘,ℓ = 𝐷𝑘−1,ℓ + 𝑐 𝑎𝑘 , 𝜀

3. 𝑏ℓ is inserted:

𝐷𝑘,ℓ = 𝐷𝑘,ℓ−1 + 𝑐 𝜀, 𝑏ℓ

Algorithm Theory, WS 2017/18 Fabian Kuhn 28

Computing the Edit Distance

• Recurrence relation (for 𝑘, ℓ ≥ 1)

𝐷𝑘,ℓ = min

𝐷𝑘−1,ℓ−1 + 𝑐 𝑎𝑘 , 𝑏ℓ
𝐷𝑘−1,ℓ + 𝑐 𝑎𝑘 , 𝜀

𝐷𝑘,ℓ−1 + 𝑐 𝜀, 𝑏ℓ

=min

𝐷𝑘−1,ℓ−1 + 1 / 0

𝐷𝑘−1,ℓ + 1

𝐷𝑘,ℓ−1 + 1

• Need to compute 𝐷𝑖,𝑗 for all 0 ≤ 𝑖 ≤ 𝑘, 0 ≤ 𝑗 ≤ ℓ:

unit cost model

𝑫𝒌−𝟏,ℓ−𝟏 𝑫𝒌−𝟏,ℓ

𝑫𝒌,ℓ−𝟏 𝑫𝒌,ℓ

+𝟏

+𝟏

+𝟏 / 𝟎

Algorithm Theory, WS 2017/18 Fabian Kuhn 29

Recurrence Relation for the Edit Distance

Base cases:

𝑫𝟎,𝟎 = 𝑫 𝜺, 𝜺 = 𝟎

𝑫𝟎,𝒋 = 𝑫 𝜺,𝑩𝒋 = 𝑫𝟎,𝒋−𝟏 + 𝒄 𝜺, 𝒃𝒋
𝑫𝒊,𝟎 = 𝑫 𝑨𝒊, 𝜺 = 𝑫𝒊−𝟏,𝟎 + 𝒄 𝒂𝒊, 𝜺

Recurrence relation:

𝑫𝒊,𝒋 = 𝐦𝐢𝐧

𝑫𝒌−𝟏,ℓ−𝟏 + 𝒄 𝒂𝒌, 𝒃ℓ
𝑫𝒌−𝟏,ℓ + 𝒄 𝒂𝒌, 𝜺

𝑫𝒌,ℓ−𝟏 + 𝒄 𝜺, 𝒃ℓ

Algorithm Theory, WS 2017/18 Fabian Kuhn 30

Order of solving the subproblems

𝑏1 𝑏2 𝑏3 𝑏4 … 𝑏𝑛

𝑎1

𝑎𝑚

𝐷𝑖,𝑗−1

𝐷𝑖,𝑗

𝐷𝑖−1,𝑗−1

𝐷𝑖−1,𝑗

𝑎2

Algorithm Theory, WS 2017/18 Fabian Kuhn 31

Algorithm for Computing the Edit Distance

Algorithm Edit-Distance

Input: 2 strings 𝐴 = 𝑎1…𝑎𝑚 and 𝐵 = 𝑏1…𝑏𝑛

Output: matrix 𝐷 = 𝐷𝑖𝑗

1 𝐷 0,0 ≔ 0;

2 for 𝑖 ≔ 1 to 𝑚 do 𝐷 𝑖, 0 ≔ 𝑖;

3 for 𝑗 ≔ 1 to 𝑛 do 𝐷 0, 𝑗 ≔ 𝑗;

4 for 𝑖 ≔ 1 to 𝑚 do

5 for 𝑗 ≔ 1 to 𝑛 do

6 𝐷 𝑖, 𝑗 ≔ min

𝐷 𝑖 − 1, 𝑗 + 1

𝐷 𝑖, 𝑗 − 1 + 1

𝐷 𝑖 − 1, 𝑗 − 1 + 𝑐 𝑎𝑖 , 𝑏𝑗

;

Algorithm Theory, WS 2017/18 Fabian Kuhn 32

Example

𝒂 𝒃 𝒄 𝒄 𝒂

𝒃

𝒂

𝒃

𝒅

𝒂

Algorithm Theory, WS 2017/18 Fabian Kuhn 33

Edit Operations

0 1

1 1

2 1

3 2

2 3

1 2

4 5

3 4

2 2

1 2

4 3

5 4

2 2

3 3

3 3

3 4

3 4

3 3

𝒂 𝒃 𝒄 𝒄 𝒂

𝒃

𝒂

𝒃

𝒅

𝒂

Algorithm Theory, WS 2017/18 Fabian Kuhn 34

Edit Operations

0 1

1 1

2 1

3 2

2 3

1 2

4 5

3 4

2 2

1 2

4 3

5 4

2 2

3 3

3 3

3 4

3 4

3 3

𝒂 𝒃 𝒄 𝒄 𝒂

𝒃

𝒂

𝒃

𝒅

𝒂

Algorithm Theory, WS 2017/18 Fabian Kuhn 35

Computing the Edit Operations

Algorithm Edit-Operations(𝑖, 𝑗)
Input: matrix 𝐷 (already computed)
Output: list of edit operations

1 if 𝑖 = 0 and 𝑗 = 0 then return empty list

2 if 𝑖 ≠ 0 and 𝐷 𝑖, 𝑗 = 𝐷 𝑖 − 1, 𝑗 + 1 then
3 return Edit-Operations(𝑖 − 1, 𝑗) ∘ „delete 𝑎𝑖“

4 else if 𝑗 ≠ 0 and 𝐷 𝑖, 𝑗 = 𝐷 𝑖, 𝑗 − 1 + 1 then
5 return Edit-Operations(𝑖, 𝑗 − 1) ∘ „insert 𝑏𝑗“

6 else // 𝐷 𝑖, 𝑗 = 𝐷 𝑖 − 1, 𝑗 − 1 + 𝑐(𝑎𝑖 , 𝑏𝑗)
7 if 𝑎𝑖 = 𝑏𝑖 then return Edit-Operations(𝑖 − 1, 𝑗 − 1)
8 else return Edit-Operations(𝑖 − 1, 𝑗 − 1) ∘ „replace 𝑎𝑖 by 𝑏𝑗“

Initial call: Edit-Operations(m,n)

Algorithm Theory, WS 2017/18 Fabian Kuhn 36

Edit Distance: Summary

• Edit distance between two strings of length 𝑚 and 𝑛 can be
computed in 𝑂 𝑚𝑛 time.

• Obtain the edit operations:
– for each cell, store which rule(s) apply to fill the cell

– track path backwards from cell (𝑚, 𝑛)

– can also be used to get all optimal “alignments”

• Unit cost model:
– interesting special case

– each edit operation costs 1

Algorithm Theory, WS 2017/18 Fabian Kuhn 37

Approximate String Matching

Given: strings 𝑇 = 𝑡1𝑡2…𝑡𝑛 (text) and 𝑃 = 𝑝1𝑝2…𝑝𝑚 (pattern).

Goal: Find an interval [𝑟, 𝑠], 1 ≤ 𝑟 ≤ 𝑠 ≤ 𝑛 such that the sub-string
𝑇𝑟,𝑠 ≔ 𝑡𝑟 …𝑡𝑠 is the one with highest similarity to the pattern 𝑃:

arg min
1≤𝑟≤𝑠≤𝑛

𝐷 𝑇𝑟,𝑠, 𝑃

𝑇

𝑃

𝑠𝑟

≈

Algorithm Theory, WS 2017/18 Fabian Kuhn 38

Approximate String Matching

Naive Solution:

for all 1 ≤ 𝑟 ≤ 𝑠 ≤ 𝑛 do

compute 𝐷(𝑇𝑟,𝑠, 𝑃)

choose the minimum

Algorithm Theory, WS 2017/18 Fabian Kuhn 39

Approximate String Matching

A related problem:

• For each position 𝑠 in the text and each position 𝑖 in the
pattern compute the minimum edit distance 𝐸(𝑖, 𝑠) between
𝑃𝑖 = 𝑝1…𝑝𝑖 and any substring 𝑇𝑟,𝑠 of 𝑇 that ends at position 𝑠.

𝑇
𝑠

𝐸(𝑖, 𝑠)

𝑃𝑖 = 𝑝1…𝑝𝑖

𝑟

𝑃

Algorithm Theory, WS 2017/18 Fabian Kuhn 40

Approximate String Matching

Three ways of ending optimal alignment between 𝑇𝑏 and 𝑃𝑖:

1. 𝑡𝑏 is replaced by 𝑝𝑖:

𝐸𝑏,𝑖 = 𝐸𝑏−1,𝑖−1 + 𝑐 𝑡𝑏 , 𝑝𝑖

2. 𝑡𝑏 is deleted:

𝐸𝑏,𝑖 = 𝐸𝑏−1,𝑖 + 𝑐 𝑡𝑏 , 𝜀

3. 𝑝𝑖 is inserted:

𝐸𝑏,𝑖 = 𝐸𝑏,𝑖−1 + 𝑐 𝜀, 𝑝𝑖

Algorithm Theory, WS 2017/18 Fabian Kuhn 41

Approximate String Matching

Recurrence relation (unit cost model):

𝑬𝒃,𝒊 = 𝐦𝐢𝐧

𝑬𝒃−𝟏,𝒊−𝟏 + 𝟏

𝑬𝒃−𝟏,𝒊 + 𝟏

𝑬𝒃,𝒊−𝟏 + 𝟏

Base cases:

𝑬𝟎,𝟎 = 𝟎

𝑬𝟎,𝒊 = 𝒊
𝑬𝒊,𝟎 = 𝟎

Algorithm Theory, WS 2017/18 Fabian Kuhn 42

Example

0 0

1 0

2 1

3 2

0 0

1 1

0 0

1 1

1 2

2 2

4 3

5 4

3 2

4 3

2 2

3 3

3 4

3 4

0 0

0 1

1 1

2 2

0 0

1 1

0 0

1 1

2 2

2 3

3 3

4 4

2 3

3 2

2 2

3 3

4 5

3 4

𝒎

𝒖

𝒍

𝒕

𝒊

𝒎 𝒂 𝒕 𝒉 𝒆 𝒎 𝒂 𝒕 𝒊 𝒄 𝒔

Algorithm Theory, WS 2017/18 Fabian Kuhn 43

Approximate String Matching

• Optimal matching consists of optimal sub-matchings

• Optimal matching can be computed in 𝑂(𝑚𝑛) time

• Get matching(s):
– Start from minimum entry/entries in bottom row

– Follow path(s) to top row

• Algorithm to compute 𝐸(𝑏, 𝑖) identical to edit distance
algorithm, except for the initialization of 𝐸(𝑏, 0)

Algorithm Theory, WS 2017/18 Fabian Kuhn 44

Related Problems in Bioinformatics

Sequence Alignment:

Find optimal alignment of two given DNA, RNA, or amino acid
sequences.

G A – C G G A T T A G

G A T C G G A A T - G

Global vs. Local Alignment:

• Global alignment: find optimal alignment of 2 sequences

• Local alignment: find optimal alignment of sequence 1
(patter) with sub-sequence of sequence 2 (text)

