

Chapter 4 Amortized Analysis

Algorithm Theory WS 2017/18

Fabian Kuhn

Amortization

- Consider sequence $o_1, o_2, ..., o_n$ of n operations (typically performed on some data structure D)
- t_i : execution time of operation o_i
- $T := t_1 + t_2 + \cdots + t_n$: total execution time
- The execution time of a single operation might vary within a large range (e.g., $t_i \in [1, O(i)]$)
- The worst case overall execution time might still be small
 - → average execution time per operation might be small in the worst case, even if single operations can be expensive

Analysis of Algorithms

- Best case
- Worst case
- Average case
- Amortized worst case

What is the average cost of an operation in a worst case sequence of operations?

Example 1: Augmented Stack

Stack Data Type: Operations

• $S.\operatorname{push}(x)$: inserts x on top of stack

• S.pop() : removes and returns top element

Complexity of Stack Operations

• In all standard implementations: O(1)

Additional Operation

- S.multipop(k): remove and return top k elements
- Complexity: O(k)
- What is the amortized complexity of these operations?

Augmented Stack: Amortized Cost

Amortized Cost

- Sequence of operations i = 1, 2, 3, ..., n
- Actual cost of op. i: t_i
- Amortized cost of op. i is a_i if for every possible seq. of op.,

$$T = \sum_{i=1}^{n} t_i \le \sum_{i=1}^{n} a_i$$

Actual Cost of Augmented Stack Operations

- S.push(x), S.pop(): actual cost $t_i = O(1)$
- $S. \operatorname{multipop}(k)$: actual cost $t_i = O(k)$
- Amortized cost of all three operations is constant
 - The total number of "popped" elements cannot be more than the total number of "pushed" elements: cost for pop/multipop ≤ cost for push

Augmented Stack: Amortized Cost

Amortized Cost

$$T = \sum_{i} t_i \le \sum_{i} a_i$$

Actual Cost of Augmented Stack Operations

- S.push(x), S.pop(): actual cost $t_i \le c$
- S. multipop(k) : actual cost $t_i \le c \cdot k$

Example 2: Binary Counter

Incrementing a binary counter: determine the bit flip cost:

Operation	Counter Value	Cost	
	00000		
1	00001	1	
2	000 10	2	
3	0001 <mark>1</mark>	1	
4	00 100	3	
5	0010 <mark>1</mark>	1	
6	001 10	2	
7	0011 1	1	
8	01000	4	
9	0100 <mark>1</mark>	1	
10	010 10	2	
11	0101 <mark>1</mark>	1	
12	01 100	3	
13	0110 1	1	

Accounting Method

Observation:

Each increment flips exactly one 0 into a 1

 $00100011111 \Rightarrow 0010010000$

Idea:

- Have a bank account (with initial amount 0)
- Paying x to the bank account costs x
- Take "money" from account to pay for expensive operations

Applied to binary counter:

- Flip from 0 to 1: pay 1 to bank account (cost: 2)
- Flip from 1 to 0: take 1 from bank account (cost: 0)
- Amount on bank account = number of ones
 - → We always have enough "money" to pay!

Accounting Method

Op.	Counter	Cost	To Bank	From Bank	Net Cost	Credit
	00000					
1	00001	1				
2	00010	2				
3	00011	1				
4	00100	3				
5	00101	1				
6	00110	2				
7	00111	1				
8	01000	4				
9	01001	1				
10	01010	2				

Potential Function Method

- Most generic and elegant way to do amortized analysis!
 - But, also more abstract than the others...
- State of data structure / system: $S \in S$ (state space)

Potential function $\Phi: \mathcal{S} \to \mathbb{R}_{\geq 0}$

Operation i:

- t_i : actual cost of operation i
- S_i : state after execution of operation i (S_0 : initial state)
- $-\Phi_i := \Phi(S_i)$: potential after exec. of operation i
- a_i : amortized cost of operation i:

$$a_i \coloneqq t_i + \Phi_i - \Phi_{i-1}$$

Potential Function Method

Operation *i*:

actual cost: t_i amortized cost: $a_i = t_i + \Phi_i - \Phi_{i-1}$

Overall cost:

$$T \coloneqq \sum_{i=1}^{n} t_i = \left(\sum_{i=1}^{n} a_i\right) + \Phi_0 - \Phi_n$$

Binary Counter: Potential Method

Potential function:

Φ: number of ones in current counter

- Clearly, $\Phi_0 = 0$ and $\Phi_i \ge 0$ for all $i \ge 0$
- Actual cost t_i:
 - 1 flip from 0 to 1
 - $t_i 1$ flips from 1 to 0
- Potential difference: $\Phi_i \Phi_{i-1} = 1 (t_i 1) = 2 t_i$
- Amortized cost: $a_i = t_i + \Phi_i \Phi_{i-1} = 2$

Example 3: Dynamic Array

- How to create an array where the size dynamically adapts to the number of elements stored?
 - e.g., Java "ArrayList" or Python "list"

Implementation:

- Initialize with initial size N_0
- Assumptions: Array can only grow by appending new elements at the end
- If array is full, the size of the array is increased by a factor $\beta>1$

Operations (array of size *N*):

- read / write: actual cost O(1)
- append: actual cost is O(1) if array is not full, otherwise the append cost is $O(\beta \cdot N)$ (new array size)

Example 3: Dynamic Array

Notation:

- n: number of elements stored
- *N*: current size of array

Cost
$$t_i$$
 of i^{th} append operation: $t_i = \begin{cases} 1 & \text{if } n < N \\ \beta \cdot N & \text{if } n = N \end{cases}$

Claim: Amortized append cost is O(1)

Potential function Φ ?

- should allow to pay expensive append operations by cheap ones
- when array is full, Φ has to be large
- immediately after increasing the size of the array, Φ should be small again

Dynamic Array: Potential Function

Cost
$$t_i$$
 of i^{th} append operation: $t_i = \begin{cases} 1 & \text{if } n < N \\ \beta \cdot N & \text{if } n = N \end{cases}$

Dynamic Array: Amortized Cost

Cost
$$t_i$$
 of i^{th} append operation: $t_i = \begin{cases} 1 & \text{if } n < N \\ \beta \cdot N & \text{if } n = N \end{cases}$