Chapter 4
Amortized Analysis

Algorithm Theory
WS 2017/18

Fabian Kuhn

UNI

FREIBURG

Amortization

UNI
f

FREIBURG

* Consider sequence 04, 0, ..., 0, of n operations
(typically performed on some data structure D)

* ;: execution time of operation o;
e T:=1t4+t, + -+ t,: total execution time

* The execution time of a single operation might

vary within a large range (e.g., t; € [1,0(i)])

* The worst case overall execution time might still be small

—> average execution time per operation might be small in
the worst case, even if single operations can be expensive

Algorithm Theory, WS 2017/18 Fabian Kuhn 2

Analysis of Algorithms

* Best case

e \Worst case

* Average case

e Amortized worst case

What is the average cost of an operation
in a worst case sequence of operations?

Algorithm Theory, WS 2017/18 Fabian Kuhn

UNI
f

FREIBURG

UNI

Example 1: Augmented Stack

FREIBURG

Stack Data Type: Operations
 S.push(x) :inserts x on top of stack
* S.pop() : removes and returns top element

Complexity of Stack Operations
* In all standard implementations: O(1)

Additional Operation
* S.multipop(k) : remove and return top k elements
e Complexity: O (k)

 What is the amortized complexity of these operations?

Algorithm Theory, WS 2017/18 Fabian Kuhn 4

Augmented Stack: Amortized Cost

UNI

FREIBURG

Amortized Cost
 Sequence of operationsi =1,2,3,...,n
* Actual cost of op. i: ¢;

* Amortized cost of op. i is a; if for every possible seq. of op.,
n n

T = ti < a;
=1 =1

Actual Cost of Augmented Stack Operations
« S.push(x), S.pop(): actual cost t; = 0(1)
« S.multipop(k) : actual cost t; = 0(k)

 Amortized cost of all three operations is constant

— The total number of “popped” elements cannot be more than the total
number of “pushed” elements: cost for pop/multipop < cost for push

Algorithm Theory, WS 2017/18 Fabian Kuhn 5

Augmented Stack: Amortized Cost

UNI

FREIBURG

Amortized Cost
DYDY
i i

Actual Cost of Augmented Stack Operations
« S.push(x), S.pop(): actualcostt; < c

« S.multipop(k) actualcostt; < c-k

Algorithm Theory, WS 2017/18 Fabian Kuhn

Example 2: Binary Counter

UNI
f

FREIBURG

Incrementing a binary counter: determine the bit flip cost:

Operation Counter Value Cost
00000
1 00001 1
2 00010 2
3 00011 1
4 00100 3
5 00101 1
6 00110 2
7 00111 1
8 01000 4
9 01001 1
10 01010 2
11 01011 1
12 01100 3
13 01101 1
Algorithm Theory, WS 2017/18 Fabian Kuhn

Accounting Method

UNI
f

FREIBURG

Observation:
* Eachincrement flips exactlyoneOintoa 1

0010001111 = 0010010000

Idea:

* Have a bank account (with initial amount 0)

* Paying x to the bank account costs x

* Take “money” from account to pay for expensive operations

Applied to binary counter:
* Flip from 0 to 1: pay 1 to bank account (cost: 2)
* Flip from 1 to O: take 1 from bank account (cost: 0)

e Amount on bank account = number of ones
- We always have enough “money” to pay!

Algorithm Theory, WS 2017/18 Fabian Kuhn

Accounting Method

UNI
i

FREIBURG

Op.

Counter

Cost

To Bank

From Bank

Net Cost

Credit

00000

00001

00010

00011

00100

00101

00110

00111

01000

O 00 N oo v | W N -

01001

[HEY
o

01010

N[B RPN R W LN PR

Algorithm Theory, WS 2017/18

Fabian Kuhn

Potential Function Method

UNI

FREIBURG

* Most generic and elegant way to do amortized analysis!
— But, also more abstract than the others...

» State of data structure / system: S € § (state space)

Potential function ®:8 - R

 Operation i:
— t;: actual cost of operation i
— §;: state after execution of operation i (S,: initial state)
— ®; = P(S;): potential after exec. of operation i
— a;: amortized cost of operation i:

a; =t +®; —P;_4

Algorithm Theory, WS 2017/18 Fabian Kuhn

10

Potential Function Method

|
FREIBURG

5
=
Operation i:
actual cost: t; amortized cost: a; = t; + &; — D;_4

Overall cost:

n n

Pyt (e + 0o,

i=1 i

Algorithm Theory, WS 2017/18 Fabian Kuhn 11

Binary Counter: Potential Method

|
FRE:BURG

UNI

Potential function:
&: number of ones in current counter

Clearly, @y = 0and ®; = Oforalli = 0

Actual cost t;:
= 1 flipfromOto1l
= t; — 1flipsfrom1toO

Potential difference: ®; — ®;_;, =1—-(t; — 1) = 2 — t;

Amortized cost: a; = t; + ; —D;_; = 2

Algorithm Theory, WS 2017/18 Fabian Kuhn

12

Example 3: Dynamic Array

UNI

* How to create an array where the size dynamically adapts to the
number of elements stored?
— e.g., Java “ArrayList” or Python “list”

Implementation:

* Initialize with initial size N,

* Assumptions: Array can only grow by appending new elements
at the end

* If array is full, the size of the array is increased by a factor f > 1

Operations (array of size N):
* read / write: actual cost 0(1)

e append: actual costis O(1) if array is not full, otherwise
the append cost is O(S - N) (new array size)

Algorithm Theory, WS 2017/18 Fabian Kuhn 13

FREIBURG

Example 3: Dynamic Array

UNI
f

FREIBURG

Notation:
* n:number of elements stored
 N:current size of array

_ _ 1 ifn <N
Cost t; of i*" append operation: t; = {,3 N ifz — N

Claim: Amortized append cost is O(1)

Potential function ®?
* should allow to pay expensive append operations by cheap ones
 when array is full, ® has to be large

 immediately after increasing the size of the array, ® should be
small again

Algorithm Theory, WS 2017/18 Fabian Kuhn 14

Dynamic Array: Potential Function

UNI
f

FREIBURG

Cost t; of it" append operation: t; = {

Algorithm Theory, WS 2017/18

Fabian Kuhn

1
b-N

ifn <N
ifn=N

15

Dynamic Array: Amortized Cost

UNI
f

FREIBURG

Cost t; of it" append operation: t; = {

Algorithm Theory, WS 2017/18

Fabian Kuhn

1
b-N

ifn <N
ifn=N

16

