Theoretical Computer Science - Bridging Course Summer Term 2017 Exercise Sheet 6

Hand in (electronically or hard copy) by 12:15 pm, December 4th, 2017

Exercise 1: Designing a Turing Machine (6 Points)

Design a Turing machine which accepts the language $L = \{w \# \overline{rev}(w) \mid w \in \{0,1\}^*\}$ where \overline{rev} denotes the reverse complement, i.e., $\overline{rev}(a_1a_2\ldots a_{n-1}a_n) = \overline{a_n} \ \overline{a_{n-1}}\ldots \overline{a_2} \ \overline{a_1}$ with $\overline{0} = 1$ and $\overline{1} = 0$.

Remark: It is sufficient to give a detailed description of the Turing Machine. You do not need to give a formal definition.

Exersive 2: Semi-Decidable vs. Recursively Enumerable (5 Points)

Very often people in computer science use the terms *semi-decidable* and *recursively enumerable* equivalently. The following exercise shows in which way they actually are equivalent. We first recall the definition of both terms.

A language L is semi-decidable if there is a Turing machine which accepts every $w \in L$ and does not accept any $w \notin L$ (this means the TM can either reject $w \notin L$ or simply not stop for $w \notin L$).

A language is *recursively enumerable* if there is a Turing machine which eventually outputs every word $w \in L$ and never outputs a word $w \notin L$.

- (a) Show that any recursively enumerable language is semi-decidable.
- (b) Show that any semi-decidable language is recursively enumberable.

Exercise 3: Halting Problem

The special halting problem is defined as

$$H_s = \{ \langle M \rangle \mid \langle M \rangle \text{ encodes a TM and } M \text{ halts on } \langle M \rangle \}.$$

(a) Show that H_s is undecidable.

Hint: Assume that M is a TM which decides H_s and then construct a TM which halts iff M does not halt. Use this construction to find a contradiction.

- (b) Show that the special halting problem is recursively enumerable.
- (c) Show that the complement of the special halting problem is not recursively enumerable. Hint: What can you say about a language L if L and its complement are recursively enumerable? (if you make some observation for this, also prove it)
- (d) Let L_1 and L_2 be recursively enumerable languages. Is $L_1 \setminus L_2$ recursively enumerable as well?
- (e) Is $L = \{w \in H_s \mid |w| \le 1742\}$ decidable? Explain your answer!

(3+2+2+2 Points)