1

Albert-Ludwigs-Universität, Inst. für Informatik Prof. Dr. Fabian Kuhn P. Bamberger, Y. Maus,

Theoretical Computer Science - Bridging Course Summer Term 2017 Exercise Sheet 7

Hand in (electronically or hard copy) by 12:15 pm, December 11th, 2017

Exercise 1: Decidability

Consider the following language

 $A_{\text{all}} = \{ \langle M \rangle \mid \text{TM } M \text{ accepts all inputs} \}$

Show that A_{all} is not decidable.

Hint: Assume that a TM M_c decides A_{all} . Then run the Turing machine M_c on some very wisely chosen input to decide the halting problem.

Exercise 2: Landau Notation

Prove or disprove the following statements

(a) $100\sqrt{n} \in O(0.001 \cdot n)$.

(b) $\log_2 3^n \in O(n)$.

(c) $2 \cdot n \in O(10 \cdot \sqrt{n}).$

Remark: There are thousands of similar exercises on the 'net'. Go through some of them to practice for the exam.

Exercise 3: Sort Functions by Asymptotic Growth (6 Points)

Sort the following functions by asymptotic growth using the \mathcal{O} -notation. Write $g <_{\mathcal{O}} f$ if $g \in \mathcal{O}(f)$ and $g \notin \mathcal{O}(f)$. Write $g =_{\mathcal{O}} f$ if $f \in \mathcal{O}(g)$ and $g \in \mathcal{O}(f)$.

n^2	\sqrt{n}	2^n	$\log(n^2)$
3^n	n^{100}	$\log(\sqrt{n})$	$(\log n)^2$
$\log n$	$10^{100}n$	n!	$n\log n$
$n \cdot 2^n$	n^n	$\sqrt{\log n}$	n

(2+2+3 Points)

(7 Points)

(6 Dointe)