Theoretical Computer Science - Bridging Course Summer Term 2017 Exercise Sheet 9

Hand in (electronically or hard copy) by 12:15 pm, January 15th, 2018

Repetition of Course Material

(0 Points)

Let L_1, L_2 be languages (problems) over alphabets Σ_1, Σ_2 . Then $L_1 \leq_p L_2$ (L_1 is polynomially reducible to L_2), iff a function $f : \Sigma_1^* \to \Sigma_2^*$ exists, that can be calculated in polynomial time and

 $\forall s \in \Sigma_1 : s \in L_1 \iff f(s) \in L_2.$

Language L is called \mathcal{NP} -hard, if all languages $L' \in \mathcal{NP}$ are polynomially reducible to L, i.e.

 $L \ \mathcal{NP}\text{-hard} \iff \forall L' \in \mathcal{NP} : L' \leq_p L.$

The reduction relation \leq_p is transitive $(L_1 \leq_p L_2 \text{ and } L_2 \leq_p L_3 \Rightarrow L_1 \leq_p L_3)$. Therefore, in order to show that L is \mathcal{NP} -hard, it suffices to reduce a known \mathcal{NP} -hard problem \tilde{L} to L, i.e. $\tilde{L} \leq_p L$. Finally a language is called \mathcal{NP} -complete ($\Leftrightarrow: L \in \mathcal{NPC}$), if

1. $L \in \mathcal{NP}$ and

2. L is \mathcal{NP} -hard.

Exercise 1: The class \mathcal{NPC}

This exercise is really (!!) important for the course.

A subset of the nodes of a graph G is a **dominating set** if every other node of G is adjacent to some node in the subset. Let

DOMINATINGSET = { $\langle G, k \rangle$ | has a dominating set with k nodes}.

Show that DOMINATINGSET is in \mathcal{NPC} . Use that

VERTEXCOVER := { $\langle G, k \rangle$ | Graph G has a vertex cover of size at most k} $\in \mathcal{NPC}$.

Remark: A VERTEXCOVER is a subset $V' \subseteq V$ of nodes of G = (V, E) such that every edge of G is adjacent to a node in the subset.

Exercise 2: *P* and *NP*?

Let $CNF_k = \{ \langle \phi \rangle \mid \phi \text{ is a satisfiable cnf-formula where each variable appears in at most } k \text{ places} \}.$

(a) Assume that $P \neq NP$ holds. Decide whether CNF_2 is in \mathcal{P} or in $\mathcal{NP} \setminus \mathcal{P}$. Prove your claim!

(b) Show that CNF_3 is \mathcal{NP} -complete.

Remark: You can gain 3 additioal points in this exercise to pass the 50% barrier.

 $(3 + (2 + 3^*) Points)$

(8 Points)

Exercise 3: Complexity Classes: Big Picture

(2+3+2 Points)

- (a) Why is $\mathcal{P} \subseteq \mathcal{NP}$?
- (b) Show that $\mathcal{P} \cap \mathcal{NPC} = \emptyset$ if $\mathcal{P} \neq \mathcal{NP}$. Hint: Assume that there exists a $L \in \mathcal{P} \cap \mathcal{NPC}$ and derive a contradiction to $\mathcal{P} \neq \mathcal{NP}$.
- (c) Give a Venn Diagram showing the sets $\mathcal{P}, \mathcal{NP}, \mathcal{NPC}$ for both cases $\mathcal{P} \neq \mathcal{NP}$ and $\mathcal{P} = \mathcal{NP}$. Remark: Use the results of (a) and (b) even if you did not succeed in proving those.