
Albert-Ludwigs-Universität, Inst. für Informatik
Prof. Dr. Fabian Kuhn
Philipp Bamberger, Yannic Maus

Theoretical Computer Science - Bridging Course

Summer Term 2018

Exercise Sheet 5

for getting feedback submit (electronically) before the start of the tutorial on
26th of November 2018.

Exercise 1: Constructing a Turing Machine (3 Points)

Consider alphabet A = {1, 2, . . . , 9}. We call a string S over A a blue string, if and only if the
string consisting of the odd-positioned symbols in S is the reverse of the string consisting of the
even-positioned symbols in S. For example S = 14233241 is a blue string since the substring of the
odd-positioned symbols is 1234 which is the reverse of the substring of the even-positioned symbols,
i.e., 4321.
Design a Turing machine which accepts all blue strings over A. You do not need to provide a formal
description of the Turing machine but your description has to be detailed enough to explain every
possible step of a computation.

Sample Solution

On input S, first go through all symbols. If it is an odd number, reject. Else repeat the following:
Go left until you reach the first unmarked symbol, mark it, go right to the last unmarked symbol,
mark it, and compare both symbols. If they are different, reject.
Accept if all symbols are marked.

Exercise 2: (4+2+2 Points)

(a) Design a Turing Machine that decides the language L := {0n1n | n ≥ 1}. Explain your choice
(you are supposed to explicitly construct the Turing machine).

(b) Give the sequence of configurations of your Turing machine run on the string 0011.

(c) Give the sequence of configurations of your Turing machine run on the string 0010.

Remark: Here, you need to solve part a) to solve part b) and c). We would try to avoid such exercises
in the exam.

Sample Solution

(a) Alternately, the TM will change a 0 to an X and then a 1 to a Y until all 0s and 1s have been
matched. In more detail, starting at the left end of the input, the TM enters a loop in which it
changes a 0 to a X and moves to the right over whatever 0s and Y s it sees, until it comes to a 1.
It changes the 1 to a Y and moves left, over Y 0s and 00s, until it finds an X. At that point, it
looks for a 0 immediately to the right, and if it finds one, changes it to X and repeats this process,
changing a matching 1 to a Y . The formal specification is M = (Q; Σ; Γ; q0; qreject; qaccept), where:

1



• Q := {q0, q1, q2, q3, qr, qa}.
• Σ = {0, 1}.
• Γ = {0, 1, X, Y,⊥}

The transition function δ is given by

Q 0 1 X Y ⊥
q0 (q1;X;R) (qr; 1;R) (qr;X;R) (q3;Y ;R) (qr; t;R)
q1 (q1; 0;R) (q2;Y ;L) (qr;X;R) (q1;Y ;R) (qr; t;R)
q2 (q2; 0;L) (qr; 1;R) (q0;X;R) (q2;Y ;L) (qr; t;R)
q3 (qr; 0;R) (qr; 1;R) (qr;X;R) (q3;Y ;R) (qa; t;R)
qr - - - - -
qa - - - -

Furthermore we have qreject := qr, qaccept := qa.

(b)

q00011→ Xq1011→ X0q111

Xq20Y 1→ q2X0Y 1→ Xq00Y 1

XXq1Y 1→ XXY q11→ XXq2Y Y

Xq2XY Y → XXq0Y Y → XXY q3Y

XXY Y q3⊥ → XXY Y tqa⊥

(c)

q00010→ Xq1010→ X0q110

Xq20Y 0→ q2X0Y 0→ Xq00Y 0

XXq1Y 0→ XXY q10→ XXY 0q1t

XXY 0tqr⊥

Exercise 3: Random Questions (2+2 Points)

(a) Does the fact that the Halting Problem is not decidable mean that we can never tell if a program
we have written is going to halt? Explain.

(b) Describe how a Turing machine with arbitrary tape alphabet Γ0 can be simulated by a Turing
machine with tape alphabet Γ1 = {0, 1,2} that never writes the symbol 2 on the tape.

Sample Solution

(a) No, e.g., any Turing machine that simulates a DFA halts and if we write such a program and
prove its correctness we know that it does.

(b) We use 0 and 1 to encode all symbols of Γ0. Wlog let a1, . . . , ak be the symbols in Γ0. A simple
way to encode these symbols is to write 1i = 1 . . . 1 for ai and use the symbol 0 to separate different
symbols.

2



Exercise 4: PDA to Turing Machine (10 Points)

Let a k-PDA be a pushdown automaton that has k stacks. Thus a 0-PDA is an NFA and a 1-PDA
is a conventional PDA. We already know that 1-PDAs are more powerful (recognize a larger class of
languages) than 0-PDAs.

(a) (5 points) Show that 2-PDAs are more powerful than 1-PDAs. Hint: Find a suitable language
that cannot be recognized by a 1-PDA but can be recognized by a 2-PDA

(b) (5 points) Show that 3-PDAs are not more powerful than 2-PDAs. Hint: Simulate a Turing
machine tape with two stacks.

Sample Solution

(a) It is easy to see that if a language can be recognized by a 1-PDA, it must be recognized by some
2-PDA. Now we show by giving an example that 2-PDA recognizes some language which 1-PDA
can not. We know that the language {anbncn |n ≥ 1} is not context-free, so that it cannot be
recognized by a 1-PDA. Now we show that a 2-PDA recognizes this language. Suppose T1 and T2
be the two stacks in the 2-PDA. The 2-PDA will do the following: For each a it reads, push ‘a’
in both T1 and T2. For each b it reads, pop ‘a’ from T1 and for each c it reads, pop ‘a’ from T2.
At any step, if it discovers the input string is not in correct order, i.e., not in the form–first all a,
then all b, then c, the machine reject the input string. If the both the stacks T1 and T2 become
empty at the end, we accept the input string. If not, reject it.

(b) If a 2-PDA can be used to simulate a Turing Machine, then it is clear that a 3-PDA is no more
powerful than a 2-PDA, since a Turing machine can simulate a 3-PDA. This is because it is easy
to simulate a 3-PDA by a 3-tape TM and we know that every multi-tape TM has an equivalent
single tape TM. Therefore, we only show that a 2-PDA can simulate a Turing Machine.

Suppose T1 and T2 be the two stacks in the 2-PDA. Consider an arbitrary position of the Turing
Machine tape-head. Then the first stack T1 contains the tape symbols (including the state) to
the left of the current head position, and the second stack T2 contains tape symbols to the right.
That is, assume at any time the Turing Machine configuration is w1qaw2, where w1 is the string
to the left of the TM head, q is the current TM state, ‘a’ is the symbol under the head and w2 is
the string to the head’s right. Then the TM configuration w1qaw2 is represented by the 2-PDA
configuration as w1q in T1 (with q at the top of the stack), and aw2 in the reverse order in T2
(i.e., with the symbol ‘a’ on top). Then the 2-PDA does the following:

1. For each step of the TM, the 2-PDA pops the top of T1 (which is the TM state), and the top
of T2 (which is the symbol currently under the simulated machine’s head).

2. This information is all we need to make a TM transition. The 2-PDA simulates δ(q, a) =
(q′, b, L) by (i) pushing b onto T2 (ii) popping from T1 and pushing the symbol obtained into T2
(iii) pushing q′ into T1. It simulates δ(q, a) = (q′, b, R) by pushing b and q′, in that order, into the
top of T1. If at any time, the 2-PDA finds that T2 is empty, it first pushes a blank symbol into
T2, and then performs in the same way.

Thus it can be seen that a 2-PDA can simulate a TM. Therefore the 3-PDA is no more powerful
than 2-PDA.

3


