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Exercise 1: Understanding FO Logic (3+2+3 Points)

Consider the following first order logical formulae

ϕ1 := ∀xR(x, x)

ϕ2 := ∀x∀y R(x, y)→ (∃zR(x, z) ∧R(z, y))

ϕ3 := ∃x∃y (¬R(x, y) ∧ ¬R(y, x))

where x, y are variable symbols and R is a binary predicate. Give an interpretation

(i) I1 which is a model of ϕ1 ∧ ϕ2.

(ii) I2 which is no model of ϕ1 ∧ ϕ2 ∧ ϕ3.

(iii) I3 which is a model of ϕ1 ∧ ϕ2 ∧ ϕ3.

Sample Solution

(i) Pick I1 := 〈R, ·I1〉 where RI2(x, y) :⇐⇒ x ≤R y.

This is a model because ’≤R’ is reflexive, therefore fulfills ϕ1. Moreover for every x, y ∈ R with
x ≤R y we can choose z := x, which fulfills x ≤R z ∧ z ≤R y. Thus ϕ2 is also satisfied.

(ii) Pick I2 := 〈R, ·I〉 where RI2(x, y) = false.

This is not a model since it violates ϕ1, e.g. RI2(5, 5)=false.

(iii) Take two disjoint copies of R and the standard ≤R relation on each of them; if x and y are from
different copies they are not related in R. Formally let

I3 := 〈{(a, 1) | a ∈ R}∪̇{(a, 2) | a ∈ R}, ·I3〉

where RI3((a, g), (b, h))⇔ (g = h and a ≤R b).

This is a model because ≤R is reflexive, therefore I3 fulfills ϕ1. Furthermore for every two
x = (a, g) and y = (b, h) with RI3((a, g), (b, h)), i.e., g = h, we can choose z := (a, g) which
fulfills RI3((a, g), (a, g)) ∧ RI3((a, g), (b, h)). Thus ϕ2 is also satisfied. ϕ3 is also satisfied, e.g.,
(5, 1) and (7, 2) are incomparable, i.e., we have neither RI3((5, 1), (7, 2)) nor RI3((7, 2), (5, 1))
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Exercise 2: Truth Value (6 Points)

Determine the truth value of the statement ∃x∀y(x ≤ y2) if the domain (or universe) for the variables
consists of:

(a) the positive real numbers,

(b) the integers,

(c) the nonzero real numbers.

Sample Solution

(a) This is false, since no matter how small a positive number x we might choose, if we assume
y =

√
x/2, then x = 2y2, and it will not be true that x ≤ y2.

(b) This is true, because we can take x = −1 as for example.

(c) This is true, since we take x = −1.
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Exercise 3: Resolution Calculus (2+4 Points)

Due to the Contradiction Theorem (cf. lecture) for every knowledge base KB and formula ϕ it holds

KB |= ϕ ⇐⇒ KB ∪ {¬ϕ} |= ⊥.

Remark: ⊥ is a formula that is unsatisfiable.

Thus, in order to show that KB entails ϕ, we show that KB∪{¬ϕ} entails a contradiction. A calculus
C is called refutation-complete if for every knowledge base KB

KB |= ⊥ =⇒ KB `C ⊥.

Therefore, if we have a refutation-complete calculus C, it suffices to show KB ∪{¬ϕ} `C ⊥ in order
to prove KB |= ϕ.

The Resolution Calculus1 R is correct and refutation-complete for knowledge bases that are given
in Conjunctive Normal Form (CNF). A knowledge base KB is in CNF if it is of the form KB =
{C1, . . . , Cn} where its clauses Ci = {Li,1, . . . , Li,mi} each consist of mi literals Li,j

Remark: KB represents the formula C1 ∧ . . . ∧ Cn with Ci = Li,1 ∨ . . . ∨ Li,mi.

The Resolution Calculus has only one inference rule, the resolution rule:

R :
C1 ∪ {L}, C2 ∪ {¬L}

C1 ∪ C2
.

Remark: L is a literal and C1 ∪ {L}, C2 ∪ {¬L} are clauses in KB (C1, C2 may be empty). To show
KB `R ⊥, you need to apply the resolution rule, until you obtain two conflicting one-literal clauses L
and ¬L. These entail the empty clause (defined as 2), i.e. a contradiction ( {L,¬L} `R ⊥ ).
Consider the following propositional formula

ψ := (x ∧ y → z ∨ w) ∧ (y → x) ∧ (z ∧ y → 0) ∧ (w ∧ y → 0) ∧ y.

Use the resolution calculus to show that ψ is unsatisfiable.
Remark: You first have to convert ψ into CNF which you already should have done in one of the
previous exercises.
Remark: The ’net’ is full of similar exercises. Practice them for the exam!

Sample Solution

The formula in CNF is

(¬x ∨ ¬y ∨ z ∨ w) ∧ (¬y ∨ x) ∧ (¬z ∨ ¬y) ∧ (¬w ∨ ¬y) ∧ y.

We use the resolution inference rule to derive an unsatisfiable formula

{¬w,¬y}, {y} `R {¬w}
{¬z,¬y}, {y} `R {¬z}
{x,¬y}, {y} `R {x}

{¬x,¬y, z, w}, {y} `R {¬x, z, w}
{¬x, z, w}, {¬w} `R {¬x, z}
{¬x, z}, {¬z} `R {¬x}
{¬x}, {x} `R 2

1Complete calculi are unpractical, since they have too many inference rules. More inference rules make automated
proving with a computer significantly more complex. The Resolution Calculus is an appropriate technique to avoid this
additional complexity, since it has only one inference rule.

3


