
University of Freiburg
Dept. of Computer Science
Prof. Dr. F. Kuhn
P. Schneider

Algorithms and Data Structures

Winter Term 2019/2020

Exercise Sheet 5
Remark: For this exercise, watch the eighth and ninth video lecture.

Exercise 1: Master Theorem for Recurrences

Use the Master Theorem for recurrences, to fill the following table. That is, in each cell write Θ
(
g(n)

)
,

such that T (n) ∈ Θ
(
g(n)

)
for the given parameters a, b, f(n). Assume T (1) ∈ Θ(1). Additionally, in

each cell note the case you used (1st, 2nd or 3rd by the order given in the lecture). We filled out one
cell as an example.

T (n)=aT (nb )+f(n) a = 16, b = 2 a = 1, b = 2 a = b = 3

f(n) = 1 Θ(n4), 1st

f(n) = n

f(n) = n4

Exercise 2: Peak Element

You are given an array A[1 . . . n] of n integers and the goal is to find a peak element, which is defined
as an element in A that is equal to or bigger than its direct neighbors in the array. Formally, A[i] is
a peak element if A[i − 1] ≤ A[i] ≥ A[i + 1]. To simplify the definition of peak elements on the rims
of A, we introduce sentinel-elements A[0] = A[n+1] = −∞.

(a) Give an algorithm with runtime O(log n) which returns the position i of a peak element.

(b) Prove that your algorithm always returns a peak element, give a recurrence relation for the runtime
and use it to prove the runtime O(log n).

Exercise 3: Binary search

(a) Provide the pseudocode of an algorithm BinarySearch implementing the following informal
algorithm description. The input is a sorted array A[0..n−1] of keys and a search key k. If there
is an index i with A[i] = k, the algorithm returns i, else false.

The algorithm first divides the array at some index m which is in the “middle”. If A[m] > k we
start the algorithm recursively on the left sub-array. If A[m] < k we start the algorithm recursively
on the right sub-array. Else we have A[m] = k and return m.

(b) Give a recurrence relation for the runtime of BinarySearch and show it has runtime O(log n).

(c) For the data structure “Hierarchy of Arrays” of Exercise Sheet 4, describe an operation Search(k)
that takes at most O

(
(log n)2

)
time and returns the array number i of an array Ai and an index

j such that Ai[j] = k, or false if such a pair i, j can not be found. Explain the runtime.


