
Algorithms and Datastructures
Runtime analysis Minsort / Heapsort, Induction

Albert-Ludwigs-Universität Freiburg

Prof. Dr. Rolf Backofen
Bioinformatics Group / Department of Computer Science
Algorithms and Datastructures, October 2018

Structure

Algorithms and Datastructures
Structure
Links
Organisation

Daphne
Forum
Checkstyle
Unit Tests
Version management
Jenkins

Sorting
Minsort
Heapsort

October 2018 Prof. Dr. Rolf Backofen – beamer-ufcd 2 / 49

Algorithms and Datastructures
Topics of this Lecture

Topics of the Lecture:
Algorithms and Data Structures
Efficient data handling and processing
. . . for problems that occur in practical any larger program /
project
Algorithm =̂ Solving of complex computional problems
Datastructure =̂ Representation of data on computer

October 2018 Prof. Dr. Rolf Backofen – beamer-ufcd 3 / 49

Example 1: Sorting

Figure: Sorting with Minsort

October 2018 Prof. Dr. Rolf Backofen – beamer-ufcd 4 / 49

https://www.youtube.com/watch?v=kPRA0W1kECg
https://www.youtube.com/watch?v=kPRA0W1kECg
https://www.youtube.com/watch?v=kPRA0W1kECg

Example 2: Navigation

Datastructures: How to
represent the map as data?
Algorithms: How to find the
shortest / fastest way?

Figure: Navigationplan
©OpenStreetMap

October 2018 Prof. Dr. Rolf Backofen – beamer-ufcd 5 / 49

http://openstreetmap.org/

Content of the Lecture 1 / 2

General:
Most of you had a lecture on basic progamming . . .

performance was not an issue

Here it is going to be:
1 How fast is our program?
2 How can we make it faster?
3 How can we proof that it will always be that fast?

Important issues:
Most of the time: application runtime
Sometimes also: resource / space consumption

October 2018 Prof. Dr. Rolf Backofen – beamer-ufcd 7 / 49

Content of the Lecture 2 / 2

Algorithms:

Sorting
Dynamic Arrays
Associative Arrays
Hashing
Edit distance

Priority Queue
Linked Lists
Pathfinding / Dijkstra Algorithm
Search Trees

Mathematics:
Runtime analysis
O-Notation

Proof of correctness

October 2018 Prof. Dr. Rolf Backofen – beamer-ufcd 8 / 49

After the lecture . . .

. . . you should be able to understand the joke

Figure: Comic xkcd/835

Hopefully your parents will still invite you
October 2018 Prof. Dr. Rolf Backofen – beamer-ufcd 9 / 49

https://xkcd.com/835/

Links

Homepage:
Exercise sheets
Lectures
Materials

Link to Homepage

October 2018 Prof. Dr. Rolf Backofen – beamer-ufcd 11 / 49

http://www.bioinf.uni-freiburg.de/Lehre/Courses/2018_WS/V_AuD/
http://www.bioinf.uni-freiburg.de/Lehre/Courses/2018_WS/V_AuD/

Organisation 1 / 5

Lecture:
Tuesday, 12:00 - 14:00, HS 00 006, Build. 082
Recordings of the lecture will be uploaded to the webpage

Exercises:
One exercise sheet per week
Submission / Correction / Assistance online
Tutorial: (if needed)
Wednesday, 13:00-14:00 - HS 00 006, Build. 082

Exam:
Planned: Sa. 23th March 2019, 10:00-12:00, Build. 101,
Lec. theater 026 & 036

October 2018 Prof. Dr. Rolf Backofen – beamer-ufcd 13 / 49

Organisation 2 / 5

Exercises:
80% practical, 20% theoretical
We expect everyone to solve every exercise sheet

Exam:
50% of all points from the exercise sheets are needed
Content of exam: whole lecture and all exercises

October 2018 Prof. Dr. Rolf Backofen – beamer-ufcd 14 / 49

Organisation - Exercises 3 / 5

Exercises:
Tutors: Tim Maffenbeier, Till Steinmann, Tobias Faller
Coordinators: Michael Uhl, Florian Eggenhofer and
Björn Grüning
Deadline: ESE: 1 week, IEMS: none

October 2018 Prof. Dr. Rolf Backofen – beamer-ufcd 15 / 49

Organisation - Exercises 3 / 5

Exercises:
Post questions into the forum (link later)
Submission via “commit” through svn and Daphne
Feedback one week after deadline through “update” (svn)

Unit test / checkstyle via Jenkins

October 2018 Prof. Dr. Rolf Backofen – beamer-ufcd 16 / 49

Organisation - Exercises 4 / 5

Exercises - Points:
Practical:

60% functionality
20% tests
20% documentation, Checkstyle, etc.
Program is not running⇒ 0 points

Theoretical (mathematical proof):
40% general idea / approach
60% clean / complete

October 2018 Prof. Dr. Rolf Backofen – beamer-ufcd 17 / 49

Organisation 5 / 5

Effort:
4 ECTS (ESE), 6 ECTS (IEMS)
120 / 180 working hours per semester
14 Lectures each 6h / 8h + exam
4h / 6h per exercise sheet (one per week)

October 2018 Prof. Dr. Rolf Backofen – beamer-ufcd 18 / 49

Daphne

Daphne:
Provides the following information:

Name / contact information of your tutor
Download of / info needed for exercise sheets
Collected points of all exercise sheets
Links to:

1 Coding standards
2 Build system
3 The other systems

Link: Daphne

October 2018 Prof. Dr. Rolf Backofen – beamer-ufcd 20 / 49

https://daphne.informatik.uni-freiburg.de/

Forum

Forum:
Please don’t hesitate to ask if something is unclear
Ask in the forum and not separate. Others might also be
interested in the answer
The tutors or the coordinators will reply as soon as possible
Link: Forum

October 2018 Prof. Dr. Rolf Backofen – beamer-ufcd 21 / 49

https://daphne.informatik.uni-freiburg.de/forum/

Checkstyle
flake8

Checkstyle / Linting (flake8):
Installation: python3 -m pip install flake8

Check file: python3 -m flake8 path/to/files/*.py

Link: flake8

October 2018 Prof. Dr. Rolf Backofen – beamer-ufcd 22 / 49

https://pypi.python.org/pypi/flake8

Unit Tests

Why unit tests?
1 A non-trivial method without a unit test is probably wrong
2 Simplifies debugging
3 We and you can automatically check correctness of code

What is a good unit test?
Unit test checks desired output for a given input
At least one typical input
At least one critical case
E.g. double occurrence of a value in sorting

October 2018 Prof. Dr. Rolf Backofen – beamer-ufcd 23 / 49

Unit Tests
doctest

Testing (doctest):

def subtract_one (n) :
" " " Subt rac ts 1 from n

>>> subtract_one (5)
4

>>> subtract_one (3)
2
" " "
r e t u rn n−1

i f __name__ == " __main__ " :
p r i n t (" 2 − 1 = %d" % subtract_one (2))

Tests are contained in
docstrings
Module doctest runs them
Run check with:
python3 -m doctest
path/to/files/*.py -v

October 2018 Prof. Dr. Rolf Backofen – beamer-ufcd 24 / 49

Version management
Subversion

Version management (subversion):
Keeps a history of code changes
Initialize / update directory: svn checkout <URL>

Add files / folders: svn add <file> --all

Create snapshot: svn commit -m "<Your Message>"
Data is uploaded to Jenkins automatically
Link: Subversion

October 2018 Prof. Dr. Rolf Backofen – beamer-ufcd 25 / 49

https://subversion.apache.org/

Jenkins

Jenkins:
Provides our build system
You can check if your uploded code runs

Especially whether all unit test pass
And if checkstyle (flake8) is statisfied

Will be shown in the first exercise
Link: Jenkins

October 2018 Prof. Dr. Rolf Backofen – beamer-ufcd 26 / 49

https://daphne.informatik.uni-freiburg.de/jenkins/

Sorting 1 / 2

Problem:
Input: n elements x1, . . . ,xn
Transitive operator “<” which returns true if the left value is
smaller than the right one

Transitivity: x < y, y < z→ x < z
Output: x1, . . . ,xn sorted with operator

Example

Input: 14, 4, 32, 19, 8, 44, 65
Output:

October 2018 Prof. Dr. Rolf Backofen – beamer-ufcd 28 / 49

Sorting 2 / 2

Why do we need sorting?
Nearly every program needs a sorting algorithm
Examples:

Index of a search engine
Listing filesystem in explorer / finder
(Music) library
Highscore list

October 2018 Prof. Dr. Rolf Backofen – beamer-ufcd 29 / 49

Minsort - Algorithm

Informal description:
Find the minimum and
switch the value with the
first position
Find the minimum and
switch the value with the
second position
· · ·

1 2 3 10 8 15 14 11 912 7 4 6 5 13

swap

Figure: Minsort

October 2018 Prof. Dr. Rolf Backofen – beamer-ufcd 31 / 49

Minsort - Algorithm

Minsort in Python:
def minsor t (l s t) :

f o r i i n range (0 , len (l s t)−1) :
minimum = i

f o r j i n range (i +1 , len (l s t)) :
i f l s t [j] < l s t [minimum] :

minimum = j

i f minimum != i :
l s t [i] , l s t [minimum] = \

l s t [minimum] , l s t [i]

r e t u rn l s t

October 2018 Prof. Dr. Rolf Backofen – beamer-ufcd 32 / 49

MinSort - Runtime

How long does our program run?

We test it for different
input sizes
Observation:
It is going to be
“disproportionately”
slower the more
numbers are being
sorted

Table: Runtime for Minsort
n Runtime / ms

2×103 5.24
4×103 16.92
6×103 39.11
8×103 67.80
10×103 105.50
12×103 150.38
14×103 204.00
16×103 265.98
18×103 334.94

October 2018 Prof. Dr. Rolf Backofen – beamer-ufcd 33 / 49

MinSort - Runtime

How long does our program run?

We test it for different input
sizes
Observation:
It is going to be
“disproportionately” slower
the more numbers are
being sorted

Figure: Runtime of Minsort
October 2018 Prof. Dr. Rolf Backofen – beamer-ufcd 34 / 49

MinSort - Runtime

Runtime analysis:

Minsort runtime depicted
in a diagram

That is what you should
do in the first exercise
sheet

We observe:
The runtime grows
faster than linear
With double the input
size we need four times
the time

Figure: Runtime of Minsort

Next lecture we will analyze deeper with other methods
October 2018 Prof. Dr. Rolf Backofen – beamer-ufcd 35 / 49

Heapsort - Algorithm 1 / 10

Heapsort:
The principle stays the same
Better structure for finding the smallest element quicker

Binary heap:
Preferably a complete binary tree
Heap property: Each child is smaller (larger) than the
parent element

October 2018 Prof. Dr. Rolf Backofen – beamer-ufcd 37 / 49

Heapsort - Algorithm 2 / 10

Min heap:
Heap property: Each child is smaller (larger) than the
parent element
A valid heap fulfills the property at each node

4

8

17 9

5

11 7

Figure: Valid min heap

17

15

8 42

22

44 23

Figure: Invalid min heap

October 2018 Prof. Dr. Rolf Backofen – beamer-ufcd 38 / 49

Heapsort - Algorithm 3 / 10

How to save the heap?
We number all nodes from top to bottom and left to right
starting at 0

The children of node i are 2i +1 and 2i +2
The parent node of node i is floor

(
i−1
2

)
40

8
1

17
3

9
4

5
2

11
5

7
6

Figure: Min heap

Table: Elements can be stored in
array

0 1 2 3 4 5 6
4 8 5 17 9 11 7

October 2018 Prof. Dr. Rolf Backofen – beamer-ufcd 39 / 49

Heapsort - Algorithm 4 / 10

Repairing after taking the smallest element: heap.pop()
Remove the smallest element (root node)
Replace the root with the last node
Sift the new root node down until the heap property is
satisfied

17

8

10 9

22

25 29

8

17

10 9

22

25 29

8

9

17 10

22

25 29

Figure: Repairing a min heap

October 2018 Prof. Dr. Rolf Backofen – beamer-ufcd 40 / 49

HeapSort - Algorithm 5 / 10

Heapsort:
Organize the n elements as heap
While the heap still contains elements

Take the smallest element
Move the last node to the root
Repair the heap as described

Output: 4, 5, . . .

4

8

17 9

5

11 7

7

8

17 9

5

11

5

8

17 9

7

11

Figure: One iteration of Heapsort

October 2018 Prof. Dr. Rolf Backofen – beamer-ufcd 41 / 49

Heapsort - Algorithm 6 / 10

Creating a heap:
This operation is called heapify
The n elements are already stored in an array
Interpret the array as binary heap where the heap property
is not yet satisfied
We repair the heap from bottom up (in layers) with sift

October 2018 Prof. Dr. Rolf Backofen – beamer-ufcd 42 / 49

Heapsort - Algorithm 7 / 10

Table: Input in array

0 1 2 3 4 5 6
11 7 8 3 2 5 4

11
0

7
1

3
3

2
4

8
2

5
5

4
6

11

2

3 7

4

5 8

Figure: Heapify lower layer

October 2018 Prof. Dr. Rolf Backofen – beamer-ufcd 43 / 49

Heapsort - Algorithm 8 / 10

11

2

3 7

4

5 8

2

11

3 7

4

5 8

Figure: Heapify upper layer

October 2018 Prof. Dr. Rolf Backofen – beamer-ufcd 44 / 49

Heapsort - Algorithm 9 / 10

2

3

11 7

4

5 8

Figure: Resulting heap

October 2018 Prof. Dr. Rolf Backofen – beamer-ufcd 45 / 49

Heapsort - Algorithm 10 / 10

Finding the minimum is intuitive:
Minsort: Iterate through all non-sorted elements
Heapsort: Finding the minimum is trivial (concept)

Just take the root of the heap

Removing the minimum in Heapsort:
Repair the heap and restore the heap property

We don’t have to repair the whole heap
More of this in the next lecture

October 2018 Prof. Dr. Rolf Backofen – beamer-ufcd 46 / 49

Further Literature

Course literature
[CRL01] Thomas H. Cormen, Ronald L. Rivest, and

Charles E. Leiserson.
Introduction to Algorithms.
MIT Press, Cambridge, Mass, 2001.

[MS08] Kurt Mehlhorn and Peter Sanders.
Algorithms and Data Structures.
Springer, Berlin, 2008.
https://people.mpi-inf.mpg.de/~mehlhorn/
ftp/Mehlhorn-Sanders-Toolbox.pdf.

October 2018 Prof. Dr. Rolf Backofen – beamer-ufcd 47 / 49

https://people.mpi-inf.mpg.de/~mehlhorn/ftp/Mehlhorn-Sanders-Toolbox.pdf
https://people.mpi-inf.mpg.de/~mehlhorn/ftp/Mehlhorn-Sanders-Toolbox.pdf

Further Literature

Sorting

[Wika] Wikipedia - Heapsort
https://en.wikipedia.org/wiki/Heapsort

[Wikb] Wikipedia - Selectionsort
https://de.wikipedia.org/wiki/Selectionsort

October 2018 Prof. Dr. Rolf Backofen – beamer-ufcd 48 / 49

https://en.wikipedia.org/wiki/Heapsort
https://de.wikipedia.org/wiki/Selectionsort

Further Literature

Subversion
[Apa] Apache Subversion

https://subversion.apache.org/

October 2018 Prof. Dr. Rolf Backofen – beamer-ufcd 49 / 49

https://subversion.apache.org/

	Algorithms and Datastructures
	Structure
	Links
	Organisation

	Sorting
	Minsort
	Heapsort

	Appendix

