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Cache Efficiency
Introduction

Background:
Up to now we always counted the number of operations
Assuming this is a good measure for the runtime of an
algorithm/tool
Today we will see examples where this is not suitable
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Cache Efficiency
Introduction

Example:
We sum up all elements of an array a of size n in . . .

natural order:

sum(a) = a[1] + a[2] + · · ·+ a[n]

random order:

sum(a) = a[21] + a[5] + · · ·+ a[8]
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Cache Efficiency
Linear Order - Python

Python:
def init(size):

""" Creates the dataset ."""

# use system time as seed
random .seed(None)

# set linear order as accessor
order = [a for a in range (0, size)]

# init array with random data
data = [ random . random () for a in order]

return (order , data)
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Cache Efficiency
Linear Order - Python

Python:
def run(param):

""" Processes the dataset ."""

# unpack data
(order , data) = param

# init the sum value
s = 0

for index in order:
s += data[index]

return s
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Cache Efficiency
Linear Order
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Figure: summing elements in linear order
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Cache Efficiency
Random Order - Python

def init(size ):
""" Creates a randomly ordered dataset ."""

# use system time as seed
random .seed(None)

# set random order as accessor
order = [a for a in range (0, size )]
random . shuffle (order)

# init array with random data
data = [ random . random () for a in order]

return (order , data)
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Cache Efficiency
Random Order
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Figure: summing elements in random order
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Cache Efficiency
Algorithm Comparision

Conclusion:
The number of operations is identical for both algorithms
Accessing elements in random order takes a lot longer
(factor 10)

Why?

The costs in terms of memory access are very different
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Cache Efficiency
CPU Cache
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Principle / organization:
Accessing one byte of the main memory takes ≈ 100ns
Accessing one byte of (L1-)cache takes ≈ 1ns
Accessing one or more byte/s of main memory loads a
whole block ≈ 100B into the cache
As long as this block is in the cache, it is not neccessary to
access the memory for bytes of this block
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Cache Efficiency
CPU Cache
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Cache organization:
The (L1-)cache can hold multiple memory blocks

Cache lines ≈ 100kB
If the capacity is reached unused blocks are discarded

Least recently used (LRU)
Least frequently used (LFU)
First in first out (FIFO)

Details of discarding not discussed today
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Cache Efficiency
Block Operations
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Memory
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M bytes = M/B blocks

Terminology:
The system consists of slow and fast memory
The slow memory is divided in blocks of size B
The fast cache has size M an can store M/B blocks
If data is not in fast memory, the corresponding block is
loaded into the cache
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Cache Efficiency
Block Operations
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M bytes = M/B blocks

Terminology:
The program defines which blocks are held in the cache
We use the number of block operations as runtime
estimation
We ignore runtime costs of cache access / management
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Cache Efficiency
Block Operations
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Figure: comparison good / bad locality

Accessing the cache B times:
Best case: 1 block operation→ good locality
Worst case: B block operations→ bad locality
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Cache Efficiency
Block Operations

Additional factors:
The following settings change only a small constant factor
in number of block operations

Partionining of the slow memory into blocks
Regardless of the block size: 1 bytes or 4 bytes or 8 bytes

Note:
If the input size is smaller than M we load the complete
data chunk directly into the cache
Cache handling is only interesting when the input size is
greater than M
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Cache Efficiency
Block Operations

Typical values: (Intel© i7-4770 Haswell, WD© Blue 2TB)
CPU L1 Cache: B = 64B, M = 4× (32kB+32kB)
CPU L2 Cache: B = 64B, M = 4×256kB
CPU L3 Cache: B = 64B, M = 8MB
Disk Cache: B = 64kB, M = 64MB

Many operating systems use free system memory as disk
cache
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Cache Efficiency
Block Operations

Terminology:
Block loads on CPU cache are called cache misses
Block operations on disk cache are called IOs
(input / output operations)
These also fall under the term cache efficiency or
IO efficiency
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Cache Efficiency
Block Operations - Linear Order

Example 1 - Linear order:
We sum up all elements in natural order

sum(a) = a[1] + a[2] + · · ·+ a[n]

The number of block operations is ceil
( n

B
)
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Cache Read / Write

Block Read / Write

Figure: good locality of sum operation
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Cache Efficiency
Block Operations - Random Order

Example 2 - Random order:
We sum up all elements in random order

sum(a) = a[21] + a[5] + · · ·+ a[8]

The number of block operations is n in the worst case
This leads to a runtime factor difference of B

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0Cache
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Block Read / Write

Figure: bad locality of sum operation
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Cache Efficiency
Block Operations

Generally the factor is substantially < B
Even with a random order we access 4 neighboring bytes
at once per int (int32_t)
The next element might already be loaded into the cache
If not n�M this might occur with a high probability
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Cache Efficiency
Block Operations - Quicksort

Quicksort:
Strategy: Divide and Conquer
Divide the data into two parts where the “left” part contains
all values ≤ the values in the right part
Choose one element (e.g the first one) as “pivot” element
Ideally both parts are the same size
Both parts are sorted recursively

p list

lower list p upper list

Figure: Quicksort with pivot element
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Idea of Quicksort

At start: pivot in first position, first re-arrange list such that
left part contains smaller and right part larger elements
Do required changes in place

PivotPivotPivotPivot

Index i

Pivot

Index i Index k

Pivot

Index i Index k

Pivot

Index i Index k

Iterate this
procedur

End point: k is left to left-most element greater than pivot
swap position 0 (pivot) with k (smaller than pivot)
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Cache Efficiency
Block Operations - Quicksort - Python

Python:

def quicksort (l, start , end ):
if (end - start) < 1:

return

i = start
k = end
piv = l[0]

...
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Cache Efficiency
Block Operations - Quicksort - Python

def quicksort (l, start , end ):
...

while k > i:
while l[i] <= piv and i <= end and k > i:

i += 1
while l[k] > piv and k >= start and k >= i:

k -= 1

if k > i: # swap elements
(l[i], l[k]) = (l[k], l[i])

(l[start], l[k]) = (l[k], l[start ])
quicksort (l, start , k - 1)
quicksort (l, k + 1, end)

December 2018 Prof. Dr. Rolf Backofen – Bioinformatics - University Freiburg - Germany 26 / 51

http://www.bioinf.uni-freiburg.de


Cache Efficiency
Block Operations - Quicksort

Number of operations for Quicksort:
Let T (n) be the runtime for the input size n

Assumptions:
Arrays are always separated perfectly in the middle
n is a power-of-two and recursion depth is k = log2n
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Cache Efficiency
Block Operations - Quicksort

T (n) ≤ A ·n︸︷︷︸
splitting in two parts

+ 2 ·T
(n
2

)
︸ ︷︷ ︸
recursive sort

≤ A ·n +2
(

A · n2 +2 ·T
(n
4

))
= 2A ·n +4 ·T

(n
4

)
≤ 3A ·n +8 ·T

(n
8

)
≤ ·· ·
≤ k ·A ·n +2k ·T (1)
= log2n ·A ·n + n ·T (1)
≤ log2n ·A ·n + n ·A ∈ O(n log2n)
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Cache Efficiency
Block Operations - Quicksort
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Figure: locality of Quicksort

Let IO(n) be the number of block operations for input size n
Assumptions as before but recursion depth is k = log2 n

B

Why?
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Cache Efficiency
Block Operations - Quicksort

IO(n) ≤ A ·n/B︸ ︷︷ ︸
splitting in two parts

+2 · IO (n/2)︸ ︷︷ ︸
recursive sort

≤ A ·n/B + 2 (A ·n/2B +2 · IO (n/4))
≤ 2 ·A ·n/B + 4 · IO (n/4)
≤ 3 ·A ·n/B + 8 · IO (n/8)
≤ ·· ·
≤ k ·A ·n/B + 2k · IO(n/2k)
= log2 (n/B) ·A · (n/B) + n/B · IO(B)

≤ log2 (n/B) ·A · (n/B) + A ·n/B ∈ O
( n

B · log2
( n

B

))
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Divide and Conquer
Introduction

Concept:
Divide the problem into smaller subproblems
Conquer the subproblems through recursive solving.
If subproblems are small enough solve them directly
Connect all solutions of the subproblems to the solution of
the full problem
Recursive application of the algorithm to ever smaller
subproblems
Direct solving of sufficiently small subproblems
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Divide and Conquer
Introduction - Python

Function solve for solving a problem of size n
def solve ( problem ):

if n < threshold :
return solution # solve directly

else:
# divide problem into subproblems
# P1 , P2 , ..., Pk with k >=2
S1 = solve(P1)
S2 = solve(P2)
...
Sk = solve(Pk)

# combine solutions
return S1 + S2 + ... + Sk
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Divide and Conquer
Features

Divide and Conquer:
Can help with conceptual hard problems
Solution of the trivial problems has to be known
Dividing into subproblems has to be possible
Combination of solutions has to be possible
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Divide and Conquer
Features

Features:
Realization of efficient solutions

If trivial solution is ∈O(1)
And separation / combination of subproblems is ∈O(n)
And the number of subproblems is limited
The runtime is ∈O(n · logn)

Suitable for parallel processing
Parallel processing of subproblems possible since
subproblems are independent of each other
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Divide and Conquer
Implementation

Definition of the trivial case:
Smaller subproblems are elegant and simple
On the other hand the efficiency will be improved if
relatively big subproblems can be solved directly
Recursion depth should not get too big (stack / memory
overhead)
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Divide and Conquer
Implementation

Division in subproblems:
Choosing the number of subproblems and the concrete
allocation can be demanding

Combination of solutions:
Typically conceptionally demanding
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Divide and Conquer
Example - Maximum Subtotal

Example - Maximum Subtotal Input:
Sequence X of n integers

Output:
Maximum sum of related subsequence and its index
boundary

Index 0 1 2 3 4 5 6 7 8 9
Value 31 -41 59 26 -53 58 97 -93 -23 84

Output: sum: 187, start: 2, end: 6
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Divide and Conquer
Example - Maximum Subtotal

Application:
Maximum profit of buying and selling shares
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Figure: stock value over time
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Divide and Conquer
Example - Maximum Subtotal - Python

Naive solution (brute force)
def maxSubArray (X):

# Store sum , start , end
result = (X[0], 0, 0)
for i in range (0, len(X)):

for j in range(i, len(X)):
subSum = 0
for k in range(i, j + 1):

subSum += X[k]
if result [0] < subSum :

result = (subSum , i, j)
return result
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Divide and Conquer
Example - Maximum Subtotal - Python

Runtime - Upper bound
def maxSubArray (X):

result = (X[0], 0, 0)
# n loops -> O(n)
for i in range (0, len(X)):

# max n loops -> O(n)
for j in range(i, len(X)):

# max n loops -> O(n)
subSum = sum(X[i:j+1])
if result [0] < subSum : # O(1)

result = (subSum , i, j)
return result
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Divide and Conquer
Example - Maximum Subtotal

Upper bound:
Three nested loops
Each loop with runtime O(n)
Algorithm runtime of O(n3)
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Divide and Conquer
Example - Maximum Subtotal - Runtime

Lower bound:

Table: Operations

i Additions j
n
3 ∈O(n) n

3 ∈O(n) n
3 ∈O(n)

We iterate at least n
3 values for i

For each i we iterate at least n
3 values for j

For each j we have at least n
3 additions

We need at least T (n) = ( n
3 )3 ∈Ω(n3) steps
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Divide and Conquer
Example - Maximum Subtotal - Runtime

Runtime:
With T (n) ∈O(n3) and T (n) ∈Ω(n3) we know:

T (n) ∈Θ(n3)

It is hard to solve the problem in a worse way . . .
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Divide and Conquer
Example - Maximum Subtotal - Runtime

Current approach:
Calculating the sum for range from i to j with loop

Si, j = X [i] + X [i +1] + · · ·+ X [j]

Better approach:
Incremental sum instead of loop

Si, j+1 = X [i] + X [i +1] + · · ·+ X [j] + X [j +1]
Si, j+1 = Si, j + X [j +1] ∈O(1) instead of ∈O(n)
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Divide and Conquer
Example - Maximum Subtotal - Python

Better solution:
def maxSubArray (X):

result = (X[0], 0, 0)
# n loops -> O(n)
for i in range (0, len(X)):

subSum = 0
# max n loops -> O(n)
for j in range(i, len(X)):

subSum += X[j] # O(1)
if result [0] < subSum : # O(1)

result = (subSum , i, j)
return result

Runtime ∈O(n2)
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Divide and Conquer
Example - Maximum Subtotal

Divide and Conquer:

A Brmax lmax

C

Divide and Conquer idea to solve:
Split the sequence in the middle
Solve left half of the problem
Solve right half and combine both solutions into one
Maximum might be located in left half (A) or right half (B)
Problem: Maximum can overlap the split
To solve this case we have to calculate rmax and lmax
The overall solution is the maximum of A, B and C
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Divide and Conquer
Example - Maximum Subtotal

Principle - Divide and Conquer:
Small problems are solved directly: n = 1⇒max = X [0]
Bigger problems are partitioned into two subproblems and
solved recursively. Subsolutions A and B are returned
To determine subsolution C, rmax and lmax for the
subproblems are computed
The overall solution is the maximum of A, B and C
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Divide and Conquer
Example - Maximum Subtotal - Python

def maxSubArray (X, i, j):
if i == j: # trivial case

return (X[i], i, i)

# recursive subsolutions for A, B
m = (i + j) // 2
A = maxSubArray (X, i, m)
B = maxSubArray (X, m + 1, j)

# rmax and lmax for cornercase C
C1 , C2 = rmax(X, i, m), lmax(X, m + 1, j)
C = (C1 [0] + C2[0], C1[1], C2 [1])

# compute solution from results A, B, C
return max ([A, B, C], key= lambda i: i[0])
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Further Literature

General
[CRL01] Thomas H. Cormen, Ronald L. Rivest, and

Charles E. Leiserson.
Introduction to Algorithms.
MIT Press, Cambridge, Mass, 2001.

[MS08] Kurt Mehlhorn and Peter Sanders.
Algorithms and data structures, 2008.
https://people.mpi-inf.mpg.de/~mehlhorn/
ftp/Mehlhorn-Sanders-Toolbox.pdf.
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Further Literature

Caching

[Wik] Cache
https://en.wikipedia.org/wiki/Cache
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