
Algorithms and Data Structures
Linked Lists, Binary Search Trees

Albert-Ludwigs-Universität Freiburg

Prof. Dr. Rolf Backofen
Bioinformatics Group / Department of Computer Science
Algorithms and Data Structures, January 2019

Structure

Sorted Sequences

Linked Lists

Binary Search Trees

January 2019 Prof. Dr. Rolf Backofen – Bioinformatics - University Freiburg - Germany 2 / 59

http://www.bioinf.uni-freiburg.de

Sorted Sequences
Introduction

Structure:
We have a set of keys mapped to values
We have an ordering < applied to the keys
We need the following operations:

insert(key, value): insert the given pair
remove(key): remove the pair with the given key
lookup(key): find the element with the given key, if it is not
available find the element with the next smallest key
next()/previous(): returns the element with the next
bigger/smaller key. This enables iteration over all elements

January 2019 Prof. Dr. Rolf Backofen – Bioinformatics - University Freiburg - Germany 3 / 59

http://www.bioinf.uni-freiburg.de

Sorted Sequences
Introduction

Application examples:
Example: database for books, products or apartments
Large number of records (data sets / tuples)
Typical query: return all apartments with a monthly rent
between 400e and 600e

This is called a range query
We can implement this with a combination of lookup(key)
and next()
It’s not essential that an apartment exists with exactly
400e monthly rent

We do not want to sort all elements every time on an insert
operation
How could we implement this?

January 2019 Prof. Dr. Rolf Backofen – Bioinformatics - University Freiburg - Germany 4 / 59

http://www.bioinf.uni-freiburg.de

Sorted Sequences
Implementation 1 (not good) - Static Array

Static array:

3 5 9 14 18 21 26 40 41 42 43 46

lookup in time O(logn)
With binary search
Example: lookup(41)

next / previous in time O(1)
They are next to each other

insert and remove up to Θ(n)
We have to copy up to n elements

January 2019 Prof. Dr. Rolf Backofen – Bioinformatics - University Freiburg - Germany 5 / 59

http://www.bioinf.uni-freiburg.de

Sorted Sequences
Implementation 2 (bad) - Hash Table

Hash map:
insert and remove in O(1)
If the hash table is big enough and we use a good hash
function

lookup in time O(1)
If element with exactly this key exists, otherwise we get
None as result

next / previous in time up to Θ(n)
Order of the elements is independent of the order of the
keys

January 2019 Prof. Dr. Rolf Backofen – Bioinformatics - University Freiburg - Germany 6 / 59

http://www.bioinf.uni-freiburg.de

Sorted Sequences
Implementation 3 (good?) - Linked List

Linked list:
Runtimes for doubly linked lists:

next / previous in time O(1)
insert and remove in O(1)
lookup in time Θ(n)

Not yet what we want, but structure is related to binary
search trees
Let’s have a closer look

January 2019 Prof. Dr. Rolf Backofen – Bioinformatics - University Freiburg - Germany 7 / 59

http://www.bioinf.uni-freiburg.de

Linked Lists
Introduction

Linked list:
Dynamic datastructure
Number of elements changeable
Data elements can be simple types or composed data
structures
Elements are linked through references / pointer to the
predecessor / successor
Single / doubly linked lists possible

...
first None

Pointer to next element

Data

Figure: Linked list

January 2019 Prof. Dr. Rolf Backofen – Bioinformatics - University Freiburg - Germany 9 / 59

http://www.bioinf.uni-freiburg.de

Linked Lists
Introduction

Properties in comparison to an array:
Minimal extra space for storing pointer
We do not need to copy elements on insert or remove

The number of elements can be simply modified
No direct access of elements
⇒ We have to iterate over the list

January 2019 Prof. Dr. Rolf Backofen – Bioinformatics - University Freiburg - Germany 10 / 59

http://www.bioinf.uni-freiburg.de

Linked Lists
Variants

List with head / last element pointer:

n10 ...
None

head last

Figure: Singly linked list

Head element has pointer to first list element
May also hold additional information:

Number of elements

January 2019 Prof. Dr. Rolf Backofen – Bioinformatics - University Freiburg - Germany 11 / 59

http://www.bioinf.uni-freiburg.de

Linked Lists
Variants

Doubly linked list:

n10

First
None ... Last

None

Figure: Doubly linked list

Pointer to successor element
Pointer to predecessor element
Iterate forward and backward

January 2019 Prof. Dr. Rolf Backofen – Bioinformatics - University Freiburg - Germany 12 / 59

http://www.bioinf.uni-freiburg.de

Linked Lists
Implementation - Node/Element - Python

class Node:
""" Defines a node of a singly linked

list.
"""

def __init__ (self , value , nextNode =None):
self.value = value
self. nextNode = nextNode

January 2019 Prof. Dr. Rolf Backofen – Bioinformatics - University Freiburg - Germany 13 / 59

http://www.bioinf.uni-freiburg.de

Linked Lists
Usage examples

Creating linked lists - Python:
first = Node(7)

7
first None

first.nextNode = Node(3)

7 3
first None

first.nextNode.value = 4

7 4
first None

January 2019 Prof. Dr. Rolf Backofen – Bioinformatics - University Freiburg - Germany 14 / 59

http://www.bioinf.uni-freiburg.de

Linked Lists
Implementation - Insert

Inserting a node after node cur:

n0 n1 n2 n3
first None

cur

January 2019 Prof. Dr. Rolf Backofen – Bioinformatics - University Freiburg - Germany 15 / 59

http://www.bioinf.uni-freiburg.de

Linked Lists
Implementation - Insert

Inserting a node after node cur:
ins = Node(n)

n0 n1 n2 n3

n

first None

ins None

cur

January 2019 Prof. Dr. Rolf Backofen – Bioinformatics - University Freiburg - Germany 16 / 59

http://www.bioinf.uni-freiburg.de

Linked Lists
Implementation - Insert

Inserting a node after node cur:
ins.nextNode = cur.nextNode

n0 n1 n2 n3

n

first None

ins

cur

January 2019 Prof. Dr. Rolf Backofen – Bioinformatics - University Freiburg - Germany 17 / 59

http://www.bioinf.uni-freiburg.de

Linked Lists
Implementation - Insert

Inserting a node after node cur:
cur.nextNode = ins

n0 n1 n2 n3

n

first None

ins

cur

January 2019 Prof. Dr. Rolf Backofen – Bioinformatics - University Freiburg - Germany 18 / 59

http://www.bioinf.uni-freiburg.de

Linked Lists
Implementation - Insert

Inserting a node after node cur - single line of code:

4 7
first None

cur

cur.nextNode = Node(value, cur.nextNode)

4 7
5

first None

cur

January 2019 Prof. Dr. Rolf Backofen – Bioinformatics - University Freiburg - Germany 19 / 59

http://www.bioinf.uni-freiburg.de

Linked Lists
Implementation - Remove

Removing a node cur:

n0 n1 n2 n3
first None

cur

January 2019 Prof. Dr. Rolf Backofen – Bioinformatics - University Freiburg - Germany 20 / 59

http://www.bioinf.uni-freiburg.de

Linked Lists
Implementation - Remove

Removing a node cur:
Find the predecessor of cur:
pre = first
while pre. nextNode != cur:

pre = pre. nextNode

Runtime of O(n)
Does not work for first node!

n0 n1 n2 n3
first None

curpre

January 2019 Prof. Dr. Rolf Backofen – Bioinformatics - University Freiburg - Germany 21 / 59

http://www.bioinf.uni-freiburg.de

Linked Lists
Implementation - Remove

Removing a node cur:
Update the pointer to the next element:
pre.nextNode = cur.nextNode

cur will get destroyed automatically if no more references
exist (cur=None)

n0 n1 n2 n3
first None

curpre

January 2019 Prof. Dr. Rolf Backofen – Bioinformatics - University Freiburg - Germany 22 / 59

http://www.bioinf.uni-freiburg.de

Linked Lists
Implementation - Remove

Removing the first node:

n0 n1 n2 n3
first None

cur

Update the pointer to the next element:
first = first.nextNode
cur will get automaticly destroyed if no more references
exist (cur=None)

n0 n1 n2 n3

first

None

cur

January 2019 Prof. Dr. Rolf Backofen – Bioinformatics - University Freiburg - Germany 23 / 59

http://www.bioinf.uni-freiburg.de

Linked Lists
Implementation - Remove

Removing a node cur: (General case)
if cur == first:

first = first. nextNode
else:

pre = first
while pre. nextNode != cur:

pre = pre. nextNode

pre. nextNode = cur. nextNode

January 2019 Prof. Dr. Rolf Backofen – Bioinformatics - University Freiburg - Germany 24 / 59

http://www.bioinf.uni-freiburg.de

Linked Lists
Implementation - Head Node

Using a head node:
Advantage:

Deleting the first node is no special case
Disadvantage

We have to consider the first node at other operations
Iterating all nodes
Counting of all nodes
. . .

n10 ...
None

head last

January 2019 Prof. Dr. Rolf Backofen – Bioinformatics - University Freiburg - Germany 25 / 59

http://www.bioinf.uni-freiburg.de

Linked Lists
Implementation - LinkedList - Python

class LinkedList :
def __init__ (self):

self. itemCount = 0
self.head = Node ()
self.last = self.head

def size(self):
return self. itemCount

def isEmpty (self):
return self. itemCount == 0

January 2019 Prof. Dr. Rolf Backofen – Bioinformatics - University Freiburg - Germany 26 / 59

http://www.bioinf.uni-freiburg.de

Linked Lists
Implementation - LinkedList - Python

def append (self , value):
...

def insertAfter (self , cur , value):
...

def remove (self , cur):
...

def get(self , position):
...

def contains (self , value):
...

January 2019 Prof. Dr. Rolf Backofen – Bioinformatics - University Freiburg - Germany 27 / 59

http://www.bioinf.uni-freiburg.de

Linked Lists
Implementation

Head, last:

n10 ...
None

head last

Head points to the first node, last to the last node
We can append elements to the end of the list in O(1)
through the last node
We have to keep the pointer to last updated after all
operations

January 2019 Prof. Dr. Rolf Backofen – Bioinformatics - University Freiburg - Germany 28 / 59

http://www.bioinf.uni-freiburg.de

Linked Lists
Implementation - Append

Appending an element:

n0

value

...
None

head last

ins None

def append (self , value):
last. nextNode = Node(value)
last = last. NextNode
itemCount += 1

The pointer to last avoids the iteration of the whole list

January 2019 Prof. Dr. Rolf Backofen – Bioinformatics - University Freiburg - Germany 29 / 59

http://www.bioinf.uni-freiburg.de

Linked Lists
Implementation - Insert After

Inserting after node cur:

n10

value
ins None

head cur last

...
None

January 2019 Prof. Dr. Rolf Backofen – Bioinformatics - University Freiburg - Germany 30 / 59

http://www.bioinf.uni-freiburg.de

Linked Lists
Implementation - Insert After

Inserting after node cur:
The pointer to head is not modified

def insertAfter (self , cur , value):
if cur == last:

also update last node
append (value)

else:
last node is not modified
cur. nextNode = Node(value , \

cur. nextNode)
itemCount += 1

January 2019 Prof. Dr. Rolf Backofen – Bioinformatics - University Freiburg - Germany 31 / 59

http://www.bioinf.uni-freiburg.de

Linked Lists
Implementation - Remove

Remove node cur:

3210

head cur last

None

January 2019 Prof. Dr. Rolf Backofen – Bioinformatics - University Freiburg - Germany 32 / 59

http://www.bioinf.uni-freiburg.de

Linked Lists
Implementation - Remove

Remove node cur:
Searching the predecessor in O(n)

def remove (self , cur):
pre = first
while pre. nextNode != cur:

pre = pre. nextNode

pre. nextNode = cur. nextNode
itemCount -= 1

if pre. nextNode == None:
last = pre

January 2019 Prof. Dr. Rolf Backofen – Bioinformatics - University Freiburg - Germany 33 / 59

http://www.bioinf.uni-freiburg.de

Linked Lists
Implementation - Get

Getting a reference to node at pos:
Iterate the entries of the list until position in O(n)

def get(self , pos):
if pos < 0 or pos >= itemCount :

return None

cur = head
for i in range (0, pos):

cur = cur. nextNode

return cur

January 2019 Prof. Dr. Rolf Backofen – Bioinformatics - University Freiburg - Germany 34 / 59

http://www.bioinf.uni-freiburg.de

Linked Lists
Implementation - Contains

Searching a value:
First element is head without an assigned value
Iterate the entries of the list until value found in O(n)
def contains (self , value):

cur = head

for i in range (0, itemCount):
cur = cur. nextNode
if cur.value == value:

return True

return False

January 2019 Prof. Dr. Rolf Backofen – Bioinformatics - University Freiburg - Germany 35 / 59

http://www.bioinf.uni-freiburg.de

Linked Lists
Runtime

Runtime:
Singly linked list:

next in O(1)
previous in Θ(n)
insert in O(1)
remove in Θ(n)
lookup in Θ(n)

Better with doubly linked lists

January 2019 Prof. Dr. Rolf Backofen – Bioinformatics - University Freiburg - Germany 36 / 59

http://www.bioinf.uni-freiburg.de

Linked Lists
Doubly Linked List

Doubly linked list:
Each node has a reference to its successor and its
predecessor
We can iterate the list forward and backward

n10

First
None ... Last

None

January 2019 Prof. Dr. Rolf Backofen – Bioinformatics - University Freiburg - Germany 37 / 59

http://www.bioinf.uni-freiburg.de

Linked Lists
Doubly Linked List

Doubly linked list:
It is helpful to have a head node
We only need one head node if we cyclically connect the
list

n10

head

...

January 2019 Prof. Dr. Rolf Backofen – Bioinformatics - University Freiburg - Germany 38 / 59

http://www.bioinf.uni-freiburg.de

Linked Lists
Runtime

Runtime of doubly linked list:
next and previous in O(1)
Each element has a pointer to pred-/sucessor

insert and remove in O(1)
A constant number of pointers needs to be modified

lookup in Θ(n)
Even if the elements are sorted we can only retrieve them
in Θ(n) Why?

January 2019 Prof. Dr. Rolf Backofen – Bioinformatics - University Freiburg - Germany 39 / 59

http://www.bioinf.uni-freiburg.de

Linked Lists
List in real program

Linked list in book:

3210

head

January 2019 Prof. Dr. Rolf Backofen – Bioinformatics - University Freiburg - Germany 40 / 59

http://www.bioinf.uni-freiburg.de

Linked Lists
List in real program

Linked list in memory:

0x06970641
0x1695FE08

head

0x01D5A0BC

0x01D5A0BC
0x01637E26

0

0x1695FE08

0x1695FE08
0x192D8203

1

0x01637E26

0x01637E26
0x06970641

2

0x192D82030x192D8203
0x01D5A0BC

3

0x06970641

January 2019 Prof. Dr. Rolf Backofen – Bioinformatics - University Freiburg - Germany 41 / 59

http://www.bioinf.uni-freiburg.de

Binary Search Trees
Introduction

Runtime of a search tree:
next and previous in O(1)
Pointers corresponding to linked list

insert and remove in O(logn)

lookup in O(logn)
The structure helps searching efficiently

January 2019 Prof. Dr. Rolf Backofen – Bioinformatics - University Freiburg - Germany 43 / 59

http://www.bioinf.uni-freiburg.de

Binary Search Trees
Introduction

Idea:
We define a total order for the search tree
All nodes of the left subtree have smaller keys than the
current node
All nodes of the right subtree have bigger keys than the
current node

January 2019 Prof. Dr. Rolf Backofen – Bioinformatics - University Freiburg - Germany 44 / 59

http://www.bioinf.uni-freiburg.de

Binary Search Trees
Introduction

Edge direction indicates ordering

8

4

2

1 3

6

5 7

12

10

9 11

14

13 15

Figure: a binary search tree

January 2019 Prof. Dr. Rolf Backofen – Bioinformatics - University Freiburg - Germany 45 / 59

http://www.bioinf.uni-freiburg.de

Binary Search Trees
Introduction

8

4

2

1 3

6

5 7

12

Figure: another binary search tree

January 2019 Prof. Dr. Rolf Backofen – Bioinformatics - University Freiburg - Germany 46 / 59

http://www.bioinf.uni-freiburg.de

Binary Search Trees
Introduction

8

4

2

1 3

6

9 7

12

Figure: not a binary search tree

January 2019 Prof. Dr. Rolf Backofen – Bioinformatics - University Freiburg - Germany 47 / 59

http://www.bioinf.uni-freiburg.de

Binary Search Trees
Implementation

Implementation:
For the heap we had all elements stored in an array
Here we link all nodes through pointers / references, like
linked lists
Each node has a pointer / reference to its children
(leftChild / rightChild)
None for missing children

12

7

3

None 5

None None

10

None None

18

15

14

None None

16

None None

None

January 2019 Prof. Dr. Rolf Backofen – Bioinformatics - University Freiburg - Germany 48 / 59

http://www.bioinf.uni-freiburg.de

Binary Search Trees
Implementation

Implementation:
We create a sorted doubly linked list of all elements
This enables an efficient implementation of (next /
previous)

12

7

3

None 5

None None

10

None None

18

15

14

None None

16

None None

Nonehead

tail

Figure: binary search tree with links

January 2019 Prof. Dr. Rolf Backofen – Bioinformatics - University Freiburg - Germany 49 / 59

http://www.bioinf.uni-freiburg.de

Binary Search Trees
Implementation - Lookup

Lookup:
Definition:
“ Search the element with the given key. If no element is
found return the element with the next (bigger) key. ”
We search from the root downwards:

Compare the searched key with the key of the node
Go to the left / right until the child is None or the key is found
If the key is not found return the next bigger one

January 2019 Prof. Dr. Rolf Backofen – Bioinformatics - University Freiburg - Germany 50 / 59

http://www.bioinf.uni-freiburg.de

Binary Search Trees
Implementation - Lookup

For each node applies the total order:
keys of left subtree < node.key < keys of right subtree

12

7

3

None 5

None None

10

None None

18

15

14

None None

16

None None

None

Figure: binary search tree with total order “<”

Examples:

lookup(14)

lookup(6)

lookup(19)

January 2019 Prof. Dr. Rolf Backofen – Bioinformatics - University Freiburg - Germany 51 / 59

http://www.bioinf.uni-freiburg.de

Binary Search Trees
Implementation - Insert

Insert:
We search for the key in our search tree
If a node is found we replace the value with the new one
Else we insert a new node
If the key was not present we get a None entry
We insert the node there

12

7

3

None 5

None None

10

None None

18

15

14

None None

16

None None

None

Figure: Binary search tree with total order “<”
January 2019 Prof. Dr. Rolf Backofen – Bioinformatics - University Freiburg - Germany 52 / 59

http://www.bioinf.uni-freiburg.de

Binary Search Trees
Implementation - Remove

Remove: case 1: the node “5” has no children
Find parent of node “5” (“6”)
Set left / right child of node “6” to None depending on
position of node “5”

8

4

2

1 3

6

5 7

12

14

Figure: Binary search tree with total order “<”

January 2019 Prof. Dr. Rolf Backofen – Bioinformatics - University Freiburg - Germany 53 / 59

http://www.bioinf.uni-freiburg.de

Binary Search Trees
Implementation - Remove

Remove: Case 1: The node “5” has no children
Find parent of node “5” (“6”)
Set left / right child of node “6” to None depending on
position of node “5”

8

4

2

1 3

6

7

12

14

Figure: binary search tree after deleting node “5”

January 2019 Prof. Dr. Rolf Backofen – Bioinformatics - University Freiburg - Germany 54 / 59

http://www.bioinf.uni-freiburg.de

Binary Search Trees
Implementation - Remove

Remove: Case 2: The node “12” has one child
Find the child of node “12” (“14”)
Find the parent of node “12” (“8”)
Set left / right child of node “8” to “14” depending on
position of node “12” (skip node “14”)

8

4

2

1 3

6

5 7

12

14

Figure: binary search tree with total order “<”

January 2019 Prof. Dr. Rolf Backofen – Bioinformatics - University Freiburg - Germany 55 / 59

http://www.bioinf.uni-freiburg.de

Binary Search Trees
Implementation - Remove

Remove: Case 2: The node “12” has one child
Find the child of node “12” (“14”)
Find the parent of node “12” (“8”)
Set left / right child of node “8” to “14” depending on
position of node “12” (skip node “14”)

8

4

2

1 3

6

5 7

14

Figure: binary search tree after delting node “12”

January 2019 Prof. Dr. Rolf Backofen – Bioinformatics - University Freiburg - Germany 56 / 59

http://www.bioinf.uni-freiburg.de

Binary Search Trees
Implementation - Remove

Remove: Case 3: The node “4” has two children
Find the successor of node “4” (“5”)
Replace the value of node “4” with the value of node “5”
Delete node “5” (the successor of node “4”) with
remove-case 1 or 2
There is no left node because we are deleting the
predecessor

8

4

2

1 3

6

5 7

12

14

January 2019 Prof. Dr. Rolf Backofen – Bioinformatics - University Freiburg - Germany 57 / 59

http://www.bioinf.uni-freiburg.de

Binary Search Trees
Implementation - Remove

Remove: Case 3: The node “4” has two children
Find the successor of node “4” (“5”)
Replace the value of node “4” with the value of node “5”
Delete node “5” (the successor of node “4”) with
remove-case 1 or 2
There is no left node because we are deleting the
predecessor

8

5

2

1 3

6

7

12

14

January 2019 Prof. Dr. Rolf Backofen – Bioinformatics - University Freiburg - Germany 58 / 59

http://www.bioinf.uni-freiburg.de

Binary Search Trees
Runtime Complexity

How long takes insert and lookup?
Up to Θ(d), with d being the depth of the tree
(The longest path from the root to a leaf)
Best case with d = logn the runtime is Θ(logn)
Worst case with d = n the runtime is Θ(n)
If we always want to have a runtime of Θ(logn) then we
have to rebalance the tree

8

7

3 None

None

Figure: degenerated binary
tree d = n

12

7

3 10

18

15 22

Figure: complete binary tree d = logn

January 2019 Prof. Dr. Rolf Backofen – Bioinformatics - University Freiburg - Germany 59 / 59

http://www.bioinf.uni-freiburg.de

Course literature
[CRL01] Thomas H. Cormen, Ronald L. Rivest, and

Charles E. Leiserson.
Introduction to Algorithms.
MIT Press, Cambridge, Mass, 2001.

[MS08] Kurt Mehlhorn and Peter Sanders.
Algorithms and data structures, 2008.
https://people.mpi-inf.mpg.de/~mehlhorn/
ftp/Mehlhorn-Sanders-Toolbox.pdf.

January 2019 Prof. Dr. Rolf Backofen – Bioinformatics - University Freiburg - Germany 59 / 59

https://people.mpi-inf.mpg.de/~mehlhorn/ftp/Mehlhorn-Sanders-Toolbox.pdf
https://people.mpi-inf.mpg.de/~mehlhorn/ftp/Mehlhorn-Sanders-Toolbox.pdf
http://www.bioinf.uni-freiburg.de

Linked List
[Wik] Linked list

https://en.wikipedia.org/wiki/Linked_list

Binary Search Tree

[Wik] Binary search tree
https:
//en.wikipedia.org/wiki/Binary_search_tree

January 2019 Prof. Dr. Rolf Backofen – Bioinformatics - University Freiburg - Germany 59 / 59

https://en.wikipedia.org/wiki/Linked_list
https://en.wikipedia.org/wiki/Binary_search_tree
https://en.wikipedia.org/wiki/Binary_search_tree
http://www.bioinf.uni-freiburg.de

	Sorted Sequences
	Linked Lists
	Binary Search Trees
	Appendix

