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Balanced Trees
Motivation

Binary search tree:
With BinarySearchTree we could perform an lookup or
insert in O(d), with d being the depth of the tree
Best case: d ∈O(logn), keys are inserted randomly
Worst case: d ∈O(n), keys are inserted in ascending /
descending order (20,19,18, . . . )
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Balanced Trees
Motivation

Gnarley trees:

http://people.ksp.sk/~kuko/bak

Figure: Binary search tree with
random insert [Gna]

Figure: Binary search tree with
descending insert [Gna]
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Balanced Trees
Motivation

Balanced trees:
We do not want to rely on certain properties of our key set
We explicitly want a depth of O(logn)
We rebalance the tree from time to time
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Balanced Trees
Motivation

How do we get a depth of O(logn)?
AVL-Tree:

Binary tree with 2 children per node
Balancing via “rotation”

(a,b)-Tree or B-Tree:
Node has between a and b children
Balancing through splitting and merging nodes
Used in databases and file systems

Red-Black-Tree:
Binary tree with “black” and “red” nodes
Balancing through “rotation” and “recoloring”
Can be interpreted as (2, 4)-tree
Used in C++ std::map and Java SortedMap
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Balanced Trees
AVL-Tree

AVL-Tree:
Gregory Maximovich Adelson-Velskii, Yevgeniy
Mikhailovlovich Landis (1963)
Search tree with modified insert and remove operations
while satisfying a depth condition
Prevents degeneration of the search tree
Height difference of left and right subtree is at maximum
one
With that the height of the search tree is always O(logn)
We can perform all basic operations in O(logn)
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Balanced Trees
AVL-Tree
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Figure: Example of an AVL-Tree
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Balanced Trees
AVL-Tree
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Figure: Not an AVL-Tree
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Balanced Trees
AVL-Tree
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Figure: Another example of an AVL-Tree
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Balanced Trees
AVL-Tree - Rebalancing

Rotation:
y

x

A B

C

Figure: Before rotating

⇒

x

A

y

B C

Figure: After rotating

Central operation of rebalancing
After rotation to the right:

Subtree A is a layer higher and subtree C a layer lower
The parent child relations between nodes x and y have
been swapped
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Balanced Trees
AVL-Tree - Rebalancing

AVL-Tree:
If a height difference of ±2 occurs on an insert or remove
operation the tree is rebalanced
Many different cases of rebalancing
Example: insert of 1,2,3, . . .

Figure: Inserting 1, . . . ,10 into an AVL-tree [Gna]
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Balanced Trees
AVL-Tree - Summary

Summary:
Historical the first search tree providing guaranteed
insert, remove and lookup in O(logn)
However not amortized update costs of O(1)
Additional memory costs: We have to save a height
difference for every node
Better (and easier) to implement are (a,b)-trees
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(a,b)-Trees
Introduction

(a,b)-Tree:
Also known as b-tree (b for “balanced”)
Used in databases and file systems

Idea:
Save a varying number of elements per node
So we have space for elements on an insert and balance
operation
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(a,b)-Trees
Introduction

(a,b)-Tree:
All leaves have the same depth
Each inner node has ≥ a and ≤ b nodes
(Only the root node may have less nodes)

2 10 18

Each node with n children is called “node of degree n” and
holds n−1 sorted elements
Subtrees are located “between” the elements
We require: a≥ 2 and b≥ 2a−1
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(a,b)-Trees
Introduction

(2,4)-Tree:
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Figure: Example of an (2,4)-tree

(2,4)-tree with depth of 3
Each node has between 2 and 4 children (1 to 3 elements)
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(a,b)-Trees
Introduction

Not an (2,4)-Tree:
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Figure: Not an (2,4)-tree

Invalid sorting
Degree of node too large / too small
Leaves on different levels

January 2019 Prof. Dr. Rolf Backofen – Bioinformatics - University Freiburg - Germany 19 / 55

http://www.bioinf.uni-freiburg.de


(a,b)-Trees
Implementation - Lookup

Searching an element: (lookup)
The same algorithm as in BinarySearchTree
Searching from the root downwards
The keys at each node set the path

Figure: (3,5)-Tree [Gna]
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(a,b)-Trees
Implementation - Insert

Inserting an element: (insert)
Search the position to insert the key into
This position will always be an leaf
Insert the element into the tree
Attention: As a result node can overflow by one element
(Degree b +1)
Then we split the node
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(a,b)-Trees
Implementation - Insert

Inserting an element: (insert)

2 10 15 24

⇒

15

2 10 24

Figure: Splitting a node

If the degree is higher than b +1 we split the node
This results in a node with ceil

(
b−1
2

)
elements, a node with

floor
(

b−1
2

)
elements and one element for the parent node

Thats why we have the limit b≥ 2a−1
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(a,b)-Trees
Implementation - Insert

Inserting an element: (insert)
If the degree is higher than b +1 we split the node
Now the parent node can be of a higher degree than b +1
We split the parent nodes the same way
If we split the root node we create a new parent root node
(The tree is now one level deeper)
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(a,b)-Trees
Implementation - Remove

Removing an element: (remove)
Search the element in O(logn) time
Case 1: The element is contained by a leaf

Remove element
Case 2: The element is contained by an inner node

Search the successor in the right subtree
The successor is always contained by a leaf
Replace the element with its successor and delete the
successor from the leaf

Attention: The leaf might be too small (degree of a−1)
⇒We rebalance the tree
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(a,b)-Trees
Implementation - Remove

Removing an element: (remove)
Attention: The leaf might be too small (degree of a−1)
⇒We rebalance the tree

Case a: If the left or right neighbour node has a degree
greater than a we borrow one element from this node

15

2 7 10

⇒

10

2 7 15

Figure: Borrow an element
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(a,b)-Trees
Implementation - Remove

Removing an element: (remove)
Attention: The leaf might be too small (degree of a−1)
⇒We rebalance the tree

Case b: We merge the node with its right or left neighbour

23

17

⇒
17 23

Figure: Merge two nodes
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(a,b)-Trees
Implementation - Remove

Removing an element: (remove)
Now the parent node can be of degree a−1
We merge parent nodes the same way
If the root has only a single child

Remove the root
Define sole child as new root
The tree shrinks by one level
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(a,b)-Trees
Runtime Complexity

Runtime complexity of lookup, insert and remove:
All operations in O(d) with d being the depth of the tree
Each node (except the root) has more than a children
⇒ n≥ ad−1 and d ≤ 1+ loga n = O(logan)

In detail:
lookup always takes Θ(d)
insert and remove often require only O(1) time
Worst case: split or merge all nodes on path up to the root
Therefore instead of b≥ 2a−1 we need b≥ 2a
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(a,b)-Trees
Runtime Complexity - Counter-example for (2,3)-Tree

Counter example (2,3)-Tree:
Before executing delete(11)
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Figure: Normal (2,3)-Tree
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(a,b)-Trees
Runtime Complexity - Counter example for (2,3)-Tree

Counter example (2,3)-Tree:
Executing delete(11)

8

4

2

1 3

6

5 7

12

10

9

14

13 15

Figure: (2,3)-Tree - Delete step 1
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(a,b)-Trees
Runtime Complexity - Counter example for (2,3)-Tree

Counter example (2,3)-Tree:
Executing delete(11)
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Figure: (2,3)-Tree - Delete step 2
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(a,b)-Trees
Runtime Complexity - Counter example for (2,3)-Tree

Counter example (2,3)-Tree:
Executing delete(11)
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Figure: (2,3)-Tree - Delete step 3

January 2019 Prof. Dr. Rolf Backofen – Bioinformatics - University Freiburg - Germany 32 / 55

http://www.bioinf.uni-freiburg.de


(a,b)-Trees
Runtime Complexity - Counter example for (2,3)-Tree

Counter example (2,3)-Tree:
Executed delete(11)
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Figure: (2,3)-Tree - Delete step 4
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(a,b)-Trees
Runtime Complexity - Counter example for (2,3)-Tree

Counter example (2,3)-Tree:
Executing insert(11)
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Figure: (2,3)-Tree - Insert step 1
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(a,b)-Trees
Runtime Complexity - Counter example for (2,3)-Tree

Counter example (2,3)-Tree:
Executing insert(11)
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Figure: (2,3)-Tree - Insert step 2
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(a,b)-Trees
Runtime Complexity - Counter example for (2,3)-Tree

Counter example (2,3)-Tree:
Executing insert(11)
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Figure: (2,3)-Tree - Insert step 3
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(a,b)-Trees
Runtime Complexity - Counter example for (2,3)-Tree

Counter example (2,3)-Tree:
Executed insert(11)
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Figure: (2,3)-Tree - Insert step 4
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(a,b)-Trees
Runtime Complexity - Counter example for (2,3)-Tree

Counter example (2,3)-Tree:
We are exactly where we started
If b = 2a−1 then we can create a
sequence of insert and remove
operations where each operation
costs O(logn)
We need b≥ 2a instead of
b≥ 2a−1
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Figure: (2,3)-Tree
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(a,b)-Trees
Runtime Complexity - (2,4)-Tree

(2,4)-Tree:
If all nodes have 2 children we have to merge the nodes up
to the root on a remove operation
If all nodes have 4 children we have to split the nodes up to
the root on a insert operation
If all nodes have 3 children it takes some time to reach one
of the previous two states

⇒ Nodes of degree 3 are stable
Neither an insert nor a remove operation trigger
rebalancing operations
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(a,b)-Trees
Runtime Complexity - (2,4)-Tree

(2,4)-Tree:
Idea:

After an expensive operation the tree is in a stable state
It takes some time until the next expensive operation occurs

Like with dynamic arrays:
Reallocation is expensive but it takes some time until the
next expensive operation occurs
If we overallocate clever we have an amortized runtime of
O(1)
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(a,b)-Trees
Runtime Complexity - (2,4)-Tree

Terminology:
We analyze a sequence of n operations
Let Φi be the potential of the tree after the i-th operation
Φi = the number of stable nodes with degree 3
Empty tree has 0 nodes: Φ = 0
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(a,b)-Trees
Runtime Complexity - (2,4)-Tree

Example:
Nodes of degree 3 are highlighted
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Figure: Tree with potential Φ = 4
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(a,b)-Trees
Runtime Complexity - (2,4)-Tree

Terminology:
Let ci be the costs = runtime of the i-th operation
We will show:

Each operation can at most destroy one stable node
For each cost incurring step the operation creates an
additional stable node

The costs for operation i are coupled to the difference of
the potential levels

ci ≤ A · (Φi −Φi−1)︸ ︷︷ ︸+B, A > 0 and B > A

Number of gained stable nodes (degree 3) ≥−1
Each operation has an amortitzed cost of O(1) summing
up to O(n) in total
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(a,b)-Trees
Runtime Complexity - (2,4)-Tree

Case 1: i-th operation is an insert operation on a full node

2 10 15 24

⇒

15

2 10 24

Figure: Splitting a node on insert

Each splitted node creates a node of degree 3
The parent node receives an element from the splitted
node
If the parent node is also full we have to split it too
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(a,b)-Trees
Runtime Complexity - (2,4)-Tree

Case 1: i-th operation is an insert operation on a full node
Let m be the number of nodes split
The potential rises by m
If the “stop-node” is of degree 3 then the potential goes
down by one

Φi ≥Φi−1 + m−1
⇒m≤Φi −Φi−1 +1

Costs: ci ≤ A ·m + B

⇒ ci ≤ A · (Φi −Φi−1 +1) + B
ci ≤ A · (Φi −Φi−1) + A + B︸ ︷︷ ︸

B′
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(a,b)-Trees
Runtime Complexity - (2,4)-Tree

Case 2: i-th operation is an remove operation
Case 2.1: Inner node

Searching the successor in a tree is O(d) = O(logn)
Normally the tree is coupled with a doubly linked list
⇒We can find the succcessor in O(1)

n210
...

tree navigation structre

Figure: Tree with doubly linked list
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(a,b)-Trees
Runtime Complexity - (2,4)-Tree

Case 2: i-th operation is an remove operation
Case 2.1: Borrow a node

Creates no additional operations
Case 2.1.1: Potential rises by one

15

2 7 10

⇒

10

2 7 15

Figure: Case 2.1.1: Borrow an element
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(a,b)-Trees
Runtime Complexity - (2,4)-Tree

Case 2: i-th operation is an remove operation
Case 2.1: Borrow a node

Creates no additional operations
Case 2.1.2: Potential is lowered by one

17

5 9
⇒

9

5 17

Figure: Case 2.1.2: Borrow an element
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(a,b)-Trees
Runtime Complexity - (2,4)-Tree

Case 2: i-th operation is an remove operation
Case 2.2: Merging two node

23

17

⇒
17 23

Figure: Merging two nodes

Potential rises by one
Parent node has one element less after the operation
This operation propagates upwards until a node of degree
> 2 or a node of degree 2, which can borrow from a
neighbour
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(a,b)-Trees
Runtime Complexity - (2,4)-Tree

Case 2: i-th operation is an remove operation
Case 2.2: Merging two node

23

17

⇒
17 23

Figure: Merging two nodes

The potential rises by m
If the “stop-node” is of degree 2 then the potential
eventually goes down by one
Same costs as insert
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(a,b)-Trees
Runtime Complexity - (2,4)-Tree - Lemma

Lemma:
We know:

ci ≤ A · (Φi −Φi−1) + B, A > 0 and B > A

With that we can conclude:
n
∑
i=0

ci ∈O(n)
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(a,b)-Trees
Runtime Complexity - (2,4)-Tree - Lemma - Proof

Proof:
n
∑
i=0

ci ≤ A · (Φ1−Φ0) + B︸ ︷︷ ︸
≤c1

+A · (Φ2−Φ1) + B︸ ︷︷ ︸
≤c2

+ · · ·+ A · (Φn−Φn−1) + B︸ ︷︷ ︸
≤cn

= A · (Φn−Φ0) + B ·n | telescope sum
= A ·Φn + B ·n | we start with an empty tree
< A ·n + B ·n ∈O(n) | number of degree 3 nodes

< number of nodes
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Red-Black-Trees
Introduction

Red-Black Tree:
Binary tree with red and black nodes
Number of black nodes on path to leaves is equal
Can be interpreted as (2,4)-tree (also named 2-3-4-tree)
Each (2,4)-tree-node is a small red-black-tree with a black
root node
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Red-Black-Trees
Introduction

Figure: Example of an red-black-tree [Gna]
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AVL-Tree
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Red-Black-Tree
[Wik] Red-black tree

https://en.wikipedia.org/wiki/Red%E2%80%
93black_tree
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