
Algorithms and Data Structures
Graphs, Depth-/Breadth-first Search, Graph-Connectivity

Albert-Ludwigs-Universität Freiburg

Prof. Dr. Rolf Backofen
Bioinformatics Group / Department of Computer Science
Algorithms and Data Structures, January 2019

Structure

Graphs
Introduction
Implementation
Application example

January 2019 Prof. Dr. Rolf Backofen – Bioinformatics - University Freiburg - Germany 2 / 65

http://www.bioinf.uni-freiburg.de

Graphs
Introduction

Graphs - Overview:
Besides arrays, lists and trees the most common data
structure
(Trees are a special type of graph)
Representation of graphs in the computer
Breadth-first search (BFS)
Depth-first search (DFS)
Connected components of a graph

January 2019 Prof. Dr. Rolf Backofen – Bioinformatics - University Freiburg - Germany 3 / 65

http://www.bioinf.uni-freiburg.de

Graphs
Introduction

Terminology:

0 1
23

4

0
1

2
3

4

Each graph G = (V ,E) consists of:
A set of vertices (nodes) V = {v1,v2, . . .}
A set of edges (arcs) E = {e1,e2, . . .}

Each edge connects two vertices (u,v ∈ V)
Undirected edge: e = {u,v} (set)
Directed edge: e = (u,v) (tuple)

Self-loops are also possible: e = (u,u) or e = {u,u}

January 2019 Prof. Dr. Rolf Backofen – Bioinformatics - University Freiburg - Germany 4 / 65

http://www.bioinf.uni-freiburg.de

Graphs
Introduction

Weighted graph:

0
1

2

3

4

3

2
2

1

1

4

9

1

5

2

Each edge is marked with a real number named weight
The weight is also named length or cost of the edge
depending on the application

January 2019 Prof. Dr. Rolf Backofen – Bioinformatics - University Freiburg - Germany 5 / 65

http://www.bioinf.uni-freiburg.de

Graphs
Introduction

Example: Road network
Intersections:
vertices
Roads: edges
Travel time:
costs of the edges

Figure: Map of Freiburg © OpenStreetMap

January 2019 Prof. Dr. Rolf Backofen – Bioinformatics - University Freiburg - Germany 6 / 65

http://www.bioinf.uni-freiburg.de

Graphs
Implementation

How to represent this graph computationally?
1 Adjacency matrix with space consumption Θ(|V |2)

0 1

2
3

2

3
9

-1

7

-2

Figure: Weighted graph with
|V | = 4, |E| = 6

end-vertice
0 1 2 3

st
ar
t-v

er
tic

e 0 2 3
1 9
2 -1
3 7 -2

Figure: Adjacency matrix

January 2019 Prof. Dr. Rolf Backofen – Bioinformatics - University Freiburg - Germany 8 / 65

http://www.bioinf.uni-freiburg.de

Graphs
Implementation

How to represent this graph computationally?
2 Adjacency list / fields with space consumption Θ(|V |+ |E|)

Each list item stores the target vertex and the cost of the
edge

0 1

2
3

2

3
9

-1

7

-2

Figure: Weighted graph with
|V | = 4, |E| = 6

st
ar
t-v

er
tic

e 0 1, 2 3, 3
1 2, 9
2 3, -1
3 1, 7 2, -2

Figure: Adjacency list

January 2019 Prof. Dr. Rolf Backofen – Bioinformatics - University Freiburg - Germany 9 / 65

http://www.bioinf.uni-freiburg.de

Graphs
Implementation

Graph: Arrangement
Graph is fully defined through the adjacency matrix / list
The arrangement is not relevant for visualisation of the
graph

0 1

2
3

2

3
9

-1

7

-2
Figure: Weighted graph with

|V | = 4, |E| = 6

0 1 2 3
2

3

9

-1

7
-2

Figure: Same graph ordered by num-
ber - outer planar graph

January 2019 Prof. Dr. Rolf Backofen – Bioinformatics - University Freiburg - Germany 10 / 65

http://www.bioinf.uni-freiburg.de

Graphs
Implementation - Python

class Graph:
def __init__ (self):

self. vertices = []
self.edges = []

def addVertice (self , vert):
self. vertices . append (vert)

def addEdge (self , fromVert , toVert , cost):
self.edges. append (\

(fromVert , toVert , cost))

...

January 2019 Prof. Dr. Rolf Backofen – Bioinformatics - University Freiburg - Germany 11 / 65

http://www.bioinf.uni-freiburg.de

Graphs
Degrees (Valency)

Degree of a vertex: Directed graph: G = (V ,E)

Figure: Vertex with in- / outdegree of 3 / 2

Indegree of a vertex u is the number of edge head ends
adjacent to the vertex

deg+(u) = |{(v,u) : (v,u) ∈ E}|
Outdegree of a vertex u is the number of edge tail ends
adjacent to the vertex

deg−(u) = |{(u,v) : (u,v) ∈ E}|

January 2019 Prof. Dr. Rolf Backofen – Bioinformatics - University Freiburg - Germany 12 / 65

http://www.bioinf.uni-freiburg.de

Graphs
Degrees (Valency)

Degree of a vertex: Undirected graph: G = (V ,E)

Figure: Vertex with degree of 4

Degree of a vertex u is the number of vertices adjacent to
the vertex

deg(u) = |{{v,u} : {v,u} ∈ E}|

January 2019 Prof. Dr. Rolf Backofen – Bioinformatics - University Freiburg - Germany 13 / 65

http://www.bioinf.uni-freiburg.de

Graphs
Paths

Paths in a graph: G = (V ,E)

0
1

2

3

4

Figure: Undirected path of length 3
P = (0,3,2,4)

0
1

2

3

4

Figure: Directed path of length 3
P = (0,3,1,4)

A path of G is a sequence of edges u1,u2, . . . ,ui ∈ V with
Undirected graph: {u1,u2},{u2,u3}, . . . ,{ui−1,ui} ∈ E
Directed graph: (u1,u2), (u2,u3), . . . , (ui−1,ui) ∈ E

January 2019 Prof. Dr. Rolf Backofen – Bioinformatics - University Freiburg - Germany 14 / 65

http://www.bioinf.uni-freiburg.de

Graphs
Paths

Paths in a graph: G = (V ,E)

0
1

2

3

4

Figure: Directed path of length 3
P = (0,3,1,4)

0
1

2
3

3 9
7

2

-1

-2
Figure: Weighted path with cost 6

P = (2,3,1)

The length of a path is: (also costs of a path)
Without weights: number of edges taken
With weights: sum of weigths of edges taken

January 2019 Prof. Dr. Rolf Backofen – Bioinformatics - University Freiburg - Germany 15 / 65

http://www.bioinf.uni-freiburg.de

Graphs
Paths

Shortest path in a graph: G = (V ,E)

0

1

2

3

4

5

1

5

10

1

3

73

1 4

2

3

Figure: Shortest path from 0 to 2 with cost / distance d(0,2) =?

The shortest path between two vertices u,v is the path
P = (u, . . . ,v) with the shortest length d(u,v) or lowest costs

January 2019 Prof. Dr. Rolf Backofen – Bioinformatics - University Freiburg - Germany 16 / 65

http://www.bioinf.uni-freiburg.de

Graphs
Paths

Shortest path in a graph: G = (V ,E)

0

1

2

3

4

5

1

5

10

1

3

73

1 4

2

3

Figure: Shortest path from 0 to 2 with cost / distance d(0,2) = 6
P = (0,1,4,3,2)

The shortest path between two vertices u,v is the path
P = (u, . . . ,v) with the shortest length d(u,v) or lowest costs

January 2019 Prof. Dr. Rolf Backofen – Bioinformatics - University Freiburg - Germany 17 / 65

http://www.bioinf.uni-freiburg.de

Graphs
Paths

Diameter of a graph: G = (V ,E) d = max
u,v∈V

d(u,v)

0

1

2

3

4

5

1

5

10

1

3

73

1 4

2

3

Figure: Diameter of graph is d =?

The diameter of a graph is the length / the costs of the
longest shortest path

January 2019 Prof. Dr. Rolf Backofen – Bioinformatics - University Freiburg - Germany 18 / 65

http://www.bioinf.uni-freiburg.de

Graphs
Paths

Diameter of a graph: G = (V ,E) d = max
u,v∈V

d(u,v)

0

1

2

3

4

5

1

5

10

1

3

73

1 4

2

3

Figure: Diameter of graph is d = 10, P = (3,2,5)

The diameter of a graph is the length / the costs of the
longest shortest path

January 2019 Prof. Dr. Rolf Backofen – Bioinformatics - University Freiburg - Germany 19 / 65

http://www.bioinf.uni-freiburg.de

Graphs
Connected Components

Connected components: G = (V ,E)

0

1

2
34

5
6

7

8 9

Figure: Three connected components

Undirected graph:
All connected components are a partition of V

V = V1∪·· ·∪Vk

Two vertices u,v are in the same connected component if a
path between u and v exists

January 2019 Prof. Dr. Rolf Backofen – Bioinformatics - University Freiburg - Germany 20 / 65

http://www.bioinf.uni-freiburg.de

Graphs
Connected Components

Connected components: G = (V ,E)
Directed graph:

Named strongly connected components
Direction of edge has to be regarded
Not part of this lecture

January 2019 Prof. Dr. Rolf Backofen – Bioinformatics - University Freiburg - Germany 21 / 65

http://www.bioinf.uni-freiburg.de

Graphs
Connected Components - Graph Exploration

Graph Exploration: (Informal definition)
Let G = (V ,E) be a graph and s ∈ V a start vertex
We visit each reachable vertex connected to s
Breadth-first search: in order of the smallest distance to s
Depth-first search: in order of the largest distance to s
Not a problem on its own but is often used as subroutine of
other algorithms

Searching of connected components
Flood fill in drawing programms

January 2019 Prof. Dr. Rolf Backofen – Bioinformatics - University Freiburg - Germany 22 / 65

http://www.bioinf.uni-freiburg.de

Graphs
Connected Components - Breadth-First Search

Breadth-First Search:
1 We start with all vertices unmarked and mark visited

vertices
2 Mark the start vertex s (level 0)
3 Mark all unmarked connected vertices (level 1)
4 Mark all unmarked vertices connected to a level 1-vertex

(level 2)
5 Iteratively mark reachable vertices for all levels
6 All connected nodes are now marked and in the same

connected component as the start vertex s

January 2019 Prof. Dr. Rolf Backofen – Bioinformatics - University Freiburg - Germany 23 / 65

http://www.bioinf.uni-freiburg.de

Graphs
Connected Components - Breadth-First Search

The marked vertices create a “spanning tree” containing all
reachable nodes

Not reachable from
start-node s

level 0
level 1
level 2
level 3

Figure: spanning tree of a breadth-first search

January 2019 Prof. Dr. Rolf Backofen – Bioinformatics - University Freiburg - Germany 24 / 65

http://www.bioinf.uni-freiburg.de

Graphs
Connected Components - Breadth-First Search

The marked vertices create a “spanning tree” containing all
reachable nodes

Not reachable from
start-node s

level 0
level 1
level 2
level 3

Figure: spanning tree of a breadth-first search

January 2019 Prof. Dr. Rolf Backofen – Bioinformatics - University Freiburg - Germany 25 / 65

http://www.bioinf.uni-freiburg.de

Graphs
Connected Components - Breadth-First Search

The marked vertices create a “spanning tree” containing all
reachable nodes

Not reachable from
start-node s

level 0
level 1
level 2
level 3

Figure: spanning tree of a breadth-first search

January 2019 Prof. Dr. Rolf Backofen – Bioinformatics - University Freiburg - Germany 26 / 65

http://www.bioinf.uni-freiburg.de

Graphs
Connected Components - Breadth-First Search

The marked vertices create a “spanning tree” containing all
reachable nodes

for
wa

rd
ed
ge

Not reachable from
start-node s

level 0
level 1
level 2
level 3

Figure: spanning tree of a breadth-first search

January 2019 Prof. Dr. Rolf Backofen – Bioinformatics - University Freiburg - Germany 27 / 65

http://www.bioinf.uni-freiburg.de

Graphs
Connected Components - Breadth-First Search

The marked vertices create a “spanning tree” containing all
reachable nodes

for
wa

rd
ed
ge

Not reachable from
start-node s

level 0
level 1
level 2
level 3

Figure: spanning tree of a breadth-first search

January 2019 Prof. Dr. Rolf Backofen – Bioinformatics - University Freiburg - Germany 28 / 65

http://www.bioinf.uni-freiburg.de

Graphs
Connected Components - Breadth-First Search

The marked vertices create a “spanning tree” containing all
reachable nodes

for
wa

rd
ed
ge

cross
edge

Not reachable from
start-node s

level 0
level 1
level 2
level 3

Figure: spanning tree of a breadth-first search

January 2019 Prof. Dr. Rolf Backofen – Bioinformatics - University Freiburg - Germany 29 / 65

http://www.bioinf.uni-freiburg.de

Graphs
Connected Components - Breadth-First Search

The marked vertices create a “spanning tree” containing all
reachable nodes

for
wa

rd
ed
ge

cross
edge

Not reachable from
start-node s

level 0
level 1
level 2
level 3

Figure: spanning tree of a breadth-first search

January 2019 Prof. Dr. Rolf Backofen – Bioinformatics - University Freiburg - Germany 30 / 65

http://www.bioinf.uni-freiburg.de

Graphs
Connected Components - Breadth-First Search

The marked vertices create a “spanning tree” containing all
reachable nodes

for
wa

rd
ed
ge

cross
edge

ba
ck
wa

rd
ed
ge

Not reachable from
start-node s

level 0
level 1
level 2
level 3

Figure: spanning tree of a breadth-first search

January 2019 Prof. Dr. Rolf Backofen – Bioinformatics - University Freiburg - Germany 31 / 65

http://www.bioinf.uni-freiburg.de

Graphs
Connected Components - Depth-First Search

Depth-First Search:
1 We start with all vertices unmarked and mark visited

vertices
2 Mark the start vertex s
3 Pick an unmarked connected vertex and start a recursive

depth-first search with the vertex as start vertex
(continue on step 2)

4 If no unmarked connected vertex exists go one vertex back
and continue recursive search
(reduce the recursion level by one)

January 2019 Prof. Dr. Rolf Backofen – Bioinformatics - University Freiburg - Germany 32 / 65

http://www.bioinf.uni-freiburg.de

Graphs
Connected Components - Depth-First Search

Depth-first search:
Search starts with long paths (searching with depth)
Like breadth-first search marks all connected vertices
If the graph is acyclic we get a topological sorting

Each newly visited vertex gets marked by an increasing
number
The numbers increase with path length from the start vertex

January 2019 Prof. Dr. Rolf Backofen – Bioinformatics - University Freiburg - Germany 33 / 65

http://www.bioinf.uni-freiburg.de

Graphs
Connected Components - Depth-First Search

The marked vertices create a different spanning tree
containing all reachable nodes

0

6

2

1

3

5

4

start-node
path 1
path 2
path 3

Figure: spanning tree of a depth-first search

January 2019 Prof. Dr. Rolf Backofen – Bioinformatics - University Freiburg - Germany 34 / 65

http://www.bioinf.uni-freiburg.de

Graphs
Connected Components - Depth-First Search

The marked vertices create a different spanning tree
containing all reachable nodes

0

6

2

1

3

5

4

start-node
path 1
path 2
path 3

Figure: spanning tree of a depth-first search

January 2019 Prof. Dr. Rolf Backofen – Bioinformatics - University Freiburg - Germany 35 / 65

http://www.bioinf.uni-freiburg.de

Graphs
Connected Components - Depth-First Search

The marked vertices create a different spanning tree
containing all reachable nodes

0

6

2

1

3

5

4

start-node
path 1
path 2
path 3

Figure: spanning tree of a depth-first search

January 2019 Prof. Dr. Rolf Backofen – Bioinformatics - University Freiburg - Germany 36 / 65

http://www.bioinf.uni-freiburg.de

Graphs
Connected Components - Depth-First Search

The marked vertices create a different spanning tree
containing all reachable nodes

0

6

2

1

3

5

4

start-node
path 1
path 2
path 3

Figure: spanning tree of a depth-first search

January 2019 Prof. Dr. Rolf Backofen – Bioinformatics - University Freiburg - Germany 37 / 65

http://www.bioinf.uni-freiburg.de

Graphs
Connected Components - Depth-First Search

The marked vertices create a different spanning tree
containing all reachable nodes

0

6

2

1

3

5

4

start-node
path 1
path 2
path 3

Figure: spanning tree of a depth-first search

January 2019 Prof. Dr. Rolf Backofen – Bioinformatics - University Freiburg - Germany 38 / 65

http://www.bioinf.uni-freiburg.de

Graphs
Connected Components - Depth-First Search

The marked vertices create a different spanning tree
containing all reachable nodes

0

6

2

1

3

5

4

ba
ck

ed
ge

start-node
path 1
path 2
path 3

Figure: spanning tree of a depth-first search

January 2019 Prof. Dr. Rolf Backofen – Bioinformatics - University Freiburg - Germany 39 / 65

http://www.bioinf.uni-freiburg.de

Graphs
Connected Components - Depth-First Search

The marked vertices create a different spanning tree
containing all reachable nodes

0

6

2

1

3

5

4

ba
ck

ed
ge

start-node
path 1
path 2
path 3

Figure: spanning tree of a depth-first search

January 2019 Prof. Dr. Rolf Backofen – Bioinformatics - University Freiburg - Germany 40 / 65

http://www.bioinf.uni-freiburg.de

Graphs
Connected Components - Depth-First Search

The marked vertices create a different spanning tree
containing all reachable nodes

0

6

2

1

3

5

4

ba
ck

ed
ge

start-node
path 1
path 2
path 3

Figure: spanning tree of a depth-first search

January 2019 Prof. Dr. Rolf Backofen – Bioinformatics - University Freiburg - Germany 41 / 65

http://www.bioinf.uni-freiburg.de

Graphs
Connected Components - Depth-First Search

The marked vertices create a different spanning tree
containing all reachable nodes

0

6

2

1

3

5

4

back
edge

ba
ck

ed
ge

forward edge

start-node
path 1
path 2
path 3

Figure: spanning tree of a depth-first search

January 2019 Prof. Dr. Rolf Backofen – Bioinformatics - University Freiburg - Germany 42 / 65

http://www.bioinf.uni-freiburg.de

Graphs
Connected Components - Depth-First Search

The marked vertices create a different spanning tree
containing all reachable nodes

0

6

2

1

3

5

4

back
edge

ba
ck

ed
ge

Not reachable from
start-node s

forward edge

start-node
path 1
path 2
path 3

Figure: spanning tree of a depth-first search

January 2019 Prof. Dr. Rolf Backofen – Bioinformatics - University Freiburg - Germany 43 / 65

http://www.bioinf.uni-freiburg.de

Graphs
Why is this called Breadth- and Depth-First Search?

January 2019 Prof. Dr. Rolf Backofen – Bioinformatics - University Freiburg - Germany 44 / 65

http://www.bioinf.uni-freiburg.de

Graphs
Connected Components - Breadth-/Depth-First Search

Runtime complexity:
Constant costs for each visited vertex and edge
We get a runtime complexity of Θ(|V ′|+ |E ′|)
Let V ′ and E ′ be the reachable vertices and edges
All vertices of V ′ are in the same connected component as
our start vertex s
This can only be improved by a constant factor

January 2019 Prof. Dr. Rolf Backofen – Bioinformatics - University Freiburg - Germany 45 / 65

http://www.bioinf.uni-freiburg.de

Application example
Image processing

Connected component labeling
Counting of objects in an image

⇒

January 2019 Prof. Dr. Rolf Backofen – Bioinformatics - University Freiburg - Germany 47 / 65

http://www.bioinf.uni-freiburg.de

Application example
Image processing

What is object, what is background?

January 2019 Prof. Dr. Rolf Backofen – Bioinformatics - University Freiburg - Germany 48 / 65

http://www.bioinf.uni-freiburg.de

Application example
Image processing

Convert to black and white using threshold:
value = 255 if value > 100 else 0

January 2019 Prof. Dr. Rolf Backofen – Bioinformatics - University Freiburg - Germany 49 / 65

http://www.bioinf.uni-freiburg.de

Application example
Image processing

Interpret image as graph:
Each white pixel is a node
Edges between adjacent pixels (normally 4 or 8 neighbors)
Edges are not saved externally, algorithm works directly on
array
Breadth- / depth-first search find all connected
components (particles)

January 2019 Prof. Dr. Rolf Backofen – Bioinformatics - University Freiburg - Germany 50 / 65

http://www.bioinf.uni-freiburg.de

Application example
Image processing

Find connected components:

Search pixel-by-pixel
for non-zero
intensity
Label found pixel as
component 1

January 2019 Prof. Dr. Rolf Backofen – Bioinformatics - University Freiburg - Germany 51 / 65

http://www.bioinf.uni-freiburg.de

Application example
Image processing

Find connected components:

Search pixel-by-pixel
for non-zero
intensity
Label found pixel as
component 1
Check neighbors of
all new labeled
pixels

January 2019 Prof. Dr. Rolf Backofen – Bioinformatics - University Freiburg - Germany 52 / 65

http://www.bioinf.uni-freiburg.de

Application example
Image processing

Find connected components:

Search pixel-by-pixel
for non-zero
intensity
Label found pixel as
component 1
Check neighbors of
all new labeled
pixels
Label non-zero
pixels as
component 1

January 2019 Prof. Dr. Rolf Backofen – Bioinformatics - University Freiburg - Germany 53 / 65

http://www.bioinf.uni-freiburg.de

Application example
Image processing

Find connected components:

Search pixel-by-pixel
for non-zero
intensity
Label found pixel as
component 1
Check neighbors of
all new labeled
pixels
Label non-zero
pixels as
component 1

January 2019 Prof. Dr. Rolf Backofen – Bioinformatics - University Freiburg - Germany 54 / 65

http://www.bioinf.uni-freiburg.de

Application example
Image processing

Find connected components:

Search pixel-by-pixel
for non-zero
intensity
Label found pixel as
component 1
Check neighbors of
all new labeled
pixels
Label non-zero
pixels as
component 1

January 2019 Prof. Dr. Rolf Backofen – Bioinformatics - University Freiburg - Germany 55 / 65

http://www.bioinf.uni-freiburg.de

Application example
Image processing

Find connected components:

Search pixel-by-pixel
for non-zero
intensity
Label found pixel as
component 1
Check neighbors of
all new labeled
pixels
Label non-zero
pixels as
component 1

January 2019 Prof. Dr. Rolf Backofen – Bioinformatics - University Freiburg - Germany 56 / 65

http://www.bioinf.uni-freiburg.de

Application example
Image processing

Find connected components:

Search pixel-by-pixel
for non-zero
intensity
Label found pixel as
component 1
Check neighbors of
all new labeled
pixels
Label non-zero
pixels as
component 1

January 2019 Prof. Dr. Rolf Backofen – Bioinformatics - University Freiburg - Germany 57 / 65

http://www.bioinf.uni-freiburg.de

Application example
Image processing

Find connected components:

Search pixel-by-pixel
for non-zero
intensity
Label found pixel as
component 1
Check neighbors of
all new labeled
pixels
Label non-zero
pixels as
component 1

January 2019 Prof. Dr. Rolf Backofen – Bioinformatics - University Freiburg - Germany 58 / 65

http://www.bioinf.uni-freiburg.de

Application example
Image processing

Find connected components:

Search pixel-by-pixel
for non-zero
intensity
Label found pixel as
component 1
Check neighbors of
all new labeled
pixels
Label non-zero
pixels as
component 1

January 2019 Prof. Dr. Rolf Backofen – Bioinformatics - University Freiburg - Germany 59 / 65

http://www.bioinf.uni-freiburg.de

Application example
Image processing

Find connected components:

Search pixel-by-pixel
for non-zero
intensity
Label found pixel as
component 1
Check neighbors of
all new labeled
pixels
Label non-zero
pixels as
component 1

January 2019 Prof. Dr. Rolf Backofen – Bioinformatics - University Freiburg - Germany 60 / 65

http://www.bioinf.uni-freiburg.de

Application example
Image processing

Find connected components:

Search pixel-by-pixel
for non-zero
intensity
Label found pixel as
component 1
Check neighbors of
all new labeled
pixels
Label non-zero
pixels as
component 1

January 2019 Prof. Dr. Rolf Backofen – Bioinformatics - University Freiburg - Germany 61 / 65

http://www.bioinf.uni-freiburg.de

Application example
Image processing

Find connected components:

Search pixel-by-pixel
for non-zero
intensity
Label found pixel as
component 2
· · ·

January 2019 Prof. Dr. Rolf Backofen – Bioinformatics - University Freiburg - Germany 62 / 65

http://www.bioinf.uni-freiburg.de

Application example
Image processing

Result of connected component labeling:

⇒

Figure: Result: particle indices instead of intensities

January 2019 Prof. Dr. Rolf Backofen – Bioinformatics - University Freiburg - Germany 63 / 65

http://www.bioinf.uni-freiburg.de

Further Literature

General
[CRL01] Thomas H. Cormen, Ronald L. Rivest, and

Charles E. Leiserson.
Introduction to Algorithms.
MIT Press, Cambridge, Mass, 2001.

[MS08] Kurt Mehlhorn and Peter Sanders.
Algorithms and data structures, 2008.
https://people.mpi-inf.mpg.de/~mehlhorn/
ftp/Mehlhorn-Sanders-Toolbox.pdf.

January 2019 Prof. Dr. Rolf Backofen – Bioinformatics - University Freiburg - Germany 64 / 65

https://people.mpi-inf.mpg.de/~mehlhorn/ftp/Mehlhorn-Sanders-Toolbox.pdf
https://people.mpi-inf.mpg.de/~mehlhorn/ftp/Mehlhorn-Sanders-Toolbox.pdf
http://www.bioinf.uni-freiburg.de

Further Literature

Graph Search

[Wika] Breadth-first search
https://en.wikipedia.org/wiki/
Breadth-first_search

[Wikb] Depth-first search
https:
//en.wikipedia.org/wiki/Depth-first_search

Graph Connectivity

[Wik] Connectivity (graph theory)
https://en.wikipedia.org/wiki/Connectivity_
(graph_theory)

January 2019 Prof. Dr. Rolf Backofen – Bioinformatics - University Freiburg - Germany 65 / 65

https://en.wikipedia.org/wiki/Breadth-first_search
https://en.wikipedia.org/wiki/Breadth-first_search
https://en.wikipedia.org/wiki/Depth-first_search
https://en.wikipedia.org/wiki/Depth-first_search
https://en.wikipedia.org/wiki/Connectivity_(graph_theory)
https://en.wikipedia.org/wiki/Connectivity_(graph_theory)
http://www.bioinf.uni-freiburg.de

	Graphs
	Introduction
	Implementation
	Application example

	Appendix

