University of Freiburg Dept. of Computer Science Prof. Dr. F. Kuhn P. Schneider

Algorithms and Data Structures Winter Term 2019/2020 Sample Solution Exercise Sheet 2

Remark: For this exercise sheet, watch the third video lecture given on the lecture website.

Exercise 1: \mathcal{O} -Notation

State whether the following claims are correct or not and prove it using the formal definition of the $\mathcal{O}, \Omega, \Theta$ -notations.

- (a) $n(n-1) \in \mathcal{O}(n^2)$
- (b) $n! \in \Omega(n^2)$
- (c) $n \in \Theta(\log_2 3^n)$
- (d) $\sqrt{n^3} \in \mathcal{O}(n \log n)$ **Hint**: For all $\varepsilon > 0$ there is an $n_0 \in \mathbb{N}$ such that for all $n \ge n_0$: $\log_2 n \le n^{\varepsilon}$.

Sample Solution

- (a) The claim is true. This is because $n(n-1) \leq n \cdot n = n^2$ for any $n \in \mathbb{N}$.
- (b) The claim is true. We choose $n_0 = 4$ and c = 1. Then we have $n^2 \le n \cdot (n-1) \cdot 2 \le n!$ for all $n \ge 4$.
- (c) The statement is true. Choose $c = \log_2 3$ und $n_0 = 1$. Then for all $n \ge n_0$ we have

$$\log_2 3^n = n \cdot \log_2 3 = c \cdot n.$$

The above equation implies both $\log_2 3^n \in \mathcal{O}(n)$ and $\log_2 3^n \in \Omega(n)$, hence $\log_2 3^n \in \Theta(n)$ (and by symmetry also $n \in \Theta(\log_2 3^n)$).

(d) The claim is false. Assume there exist $c > 0, n_0 \in \mathbb{N}$ such that for all $n \ge n_0 : \sqrt{n^3} \le cn \log n$.

$$\begin{split} \sqrt{n^3} &\leq cn \log n, \quad \forall n \geq n_0 \\ \Longleftrightarrow \quad n^{1/2} \leq c \log n, \quad \forall n \geq n_0 \\ \Leftrightarrow \quad n^{1/4} \cdot n^{1/4} \leq c \log n, \quad \forall n \geq n_0 \\ \implies \quad \left(n^{1/4} \leq c \quad \text{OR} \quad n^{1/4} \leq \log n \right), \quad \forall n \geq n_0 \end{split}$$

But $n^{1/4} \leq c$ is contradictory for all $n \geq c^4$. Additionally $n^{1/4} \leq \log n \quad \forall n \geq n_0$ is a contradiction to the hint. Thus the assumption must have been false, and therefore $\sqrt{n^3} \notin \mathcal{O}(n \log n)$.

Exercise 2: Sort Functions by Asymptotic Growth

Use the definition of the \mathcal{O} -notation to give a sequence of the functions below, which is ordered by asymptotic growth (ascending). Between two consecutive functions g and f in your sequence, insert either \prec (in case $g \in \mathcal{O}(f)$ and $f \notin \mathcal{O}(g)$) or \simeq (in case $g \in \mathcal{O}(f)$ and $f \in \mathcal{O}(g)$).

n^2	\sqrt{n}	$2^{\sqrt{n}}$	$\log(n^2)$
$2^{\sqrt{\log_2 n}}$	$\log(n!)$	$\log(\sqrt{n})$	$(\log n)^2$
$\log n$	$10^{100}n$	n!	$n\log n$
$2^n/n$	n^n	$\sqrt{\log n}$	n

Sample Solution

	$\sqrt{\log n}$	\prec	$\log(\sqrt{n})$	\simeq	$\log n$	\simeq	$\log(n^2)$
\prec	$(\log n)^2$	\prec	$2^{\sqrt{\log_2 n}}$	\prec	\sqrt{n}	\prec	n
\simeq	$10^{100}n$	\prec	$n\log n$	\simeq	$\log(n!)$	\prec	n^2
\prec	$2^{\sqrt{n}}$	\prec	$2^n/n$	\prec	n!	\prec	n^n