
University of Freiburg
Dept. of Computer Science
Prof. Dr. F. Kuhn
P. Schneider

Algorithms and Data Structures

Winter Term 2019/2020

Sample Solution Exercise Sheet 4

Remark: For this exercise, watch the relevant parts of the sixth and seventh video lecture.

Exercise 1: Hashing - Collision Resolution with Open Addressing

(a) Let h(s, j) := h1(s)− 2j mod m and let h1(x) = x + 2 mod m. Insert the keys 51, 13, 21, 30, 23,
72 into the hash table of size m = 7 using linear probing for collision resolution (the table should
show the final state).

0 1 2 3 4 5 6

(b) Let h(s, j) := h1(s)+ j ·h2(s) mod m and let h1(x) = x mod m and h2(x) = 1+
(
x mod (m−1)

)
.

Insert the keys 28, 59, 47, 13, 39, 69, 12 into the hash table of size m = 11 using the double
hashing probing technique for collision resolution. The hash table below should show the final
state.

0 1 2 3 4 5 6 7 8 9 10

(c) Repeat part (a) using the “ordered hashing” optimization from the lecture.

(d) Repeat part (b) using the “Robin-Hood hashing” optimization from the lecture.

Sample Solution

(a)

30 13 21 72 51 23

0 1 2 3 4 5 6

(b)

69 13 47 59 39 28 12

0 1 2 3 4 5 6 7 8 9 10

(c)

30 13 21 72 23 51

0 1 2 3 4 5 6

(d)

47 12 69 59 28 39 13
j=1 j=0 j=1 j=1 j=1 j=1 j=1

0 1 2 3 4 5 6 7 8 9 10

Exercise 2: Amortized Analysis - Stack with Multipop

Consider the data structure “stack” in which elements can be stored in a last in first out manner. For
a stack S we have the following operations:

• S.push(x) puts element x onto S.

• S.pop() deletes the topmost element of S. Assume pop() is only called if S is nonempty.

• S.multipop(k) removes the k top objects of S, popping the entire stack if S contains fewer than
k objects.

Assume the costs of S.push(x) and S.pop() are 1 and the cost of S.multipop(k) is min(k, |S|) where
|S| is the current number of elements in S.

Use the bank account paradigm to show that all three operations have constant amortized cost.
Assume that S is initially empty.

Sample Solution

Define the costs of the operations as follows:

operation amortized cost actual cost

S.push(x) 2 1
S.pop() 0 1
S.multipop(k) 0 min(k, |S|)

The difference between the amortized cost minus the actual cost can be seen as the number of coins
that are “paid” into or subtracted from the bank account whenever the corresponding operation occurs.
We have to show that for a sequence of n operations (under the assumption that the stack is initially
empty and that we never call S.pop() on the empty stack), we always have enough coins on the bank
account to “pay” said difference between amortized and actual cost in case the difference is negative
(which is the case for the latter two operations).
For the data structure above this is fairly obvious, as we see from the following, simple argument.
For each S.push(x) operation we increase the bank account by one. Since we can remove at most
as many elements as we pushed before (initially we assume an empty stack) and since each removed
element is associated with a cost of 1 (no matter if we remove it with S.pop() or in a batch with
S.multipop(k)) we have always enough coins on the bank account to pay for the removal. That is,
if ci the actual cost and ai the amortized cost of operation i ≤ n, then

n∑
i=1

ci ≤
n∑

i=1

ai.

Exercise 3: Amortized Analysis - a Hierarchy of Arrays

Consider the following data structure. We define arrays Ai (for i = 0, 1, 2, . . .), where Ai has size 2i

and stores integer keys in a sorted manner (ascending). During the runtime we ensure that each Array
is either completely full, or completely empty.
We informally describe an operation insert(k). It first tries to insert the key k into A0. If A0 is
empty, we insert k into A0 and are done. If A0 happens to be already full (i.e. it contains one element),
A0 is merged with k to form a new sorted array B1 of size 2. If A1 is empty, B1 becomes the new
Array A1 and we are done. Else B1 is merged with A1 into a sorted Array B2 of size 4 and the same
procedure is repeated with A2, A3, . . . until we find an Array Ai that is empty.

(a) Describe a subprocedure merge(A,B) (as pseudo code or as informal algorithm description) that
merges the contents of two sorted Arrays A,B of size m into a new, sorted array of size 2m in
O(m) runtime. Explain why your algorithm has the runtime O(m).

(b) Show that any series of n insert-operations has an amortized runtime of at most O(log n).

Sample Solution

(a) Consider the following pseudocode.

Algorithm 1 merge(A[0..m−1], B[0..m−1])

C ← allocate array of size 2m
i← 0; j ← 0; k ← 0

while k < 2m do
if j = m or A[i] ≤ B[j] then

C[k]← A[i]; i← i + 1
else

C[k]← B[j]; j ← j + 1

k ← k + 1

return C

The loop has 2m ∈ O(m) cycles since k is increased in each cycle, and in each cycle we do only
constant time operations.

(b) We want to compute the sum of runtime of all n insert operations. Let Ttotal be the total runtime
for inserting n elements. As the merge operation is the costliest operation during each insert,
the overall runtime Ttotal equals the runtime for the overall number of merge operations occurring
during all inserts. We make a few observations about these merge operations.

Observation 1. An Array Ai of size 2i > n is never used since it would not be completely filled.
Hence only arrays Ai with 2i ≤ n (i.e. i ≤ blog2(n)c) can be non-empty at some point.

Observation 2. Elements are only moved from smaller to larger arrays, when we merge two
arrays into the next bigger array. Hence, each element is inserted at most once into each array Ai.

Observation 3. We always insert 2i elements at once into Ai and we have at most n elements in
our data structure. Since each element is inserted at most once on each level i (Observation 2),
we can conduct the associated merge operation of arrays Ai−1, Bi−1 at most n/2i times.

Observation 4. The cost of merging arrays Ai−1, Bi−1 is O(2i) (c.f., part (a)).

Let Ti be the total cost of all merge operations done on level i. We calculate Ttotal as follows

Ttotal =

“∞”∑
i=0

Ti
Obs. 1

=

blog2 nc∑
i=0

Ti
Obs. 3+4

=

blog2 nc∑
i=0

n
2i
· O(2i) =

blog2 nc∑
i=0

O(n) = O(n log n)

Since we have n operations, the amortized cost of one insert operation is

Tinsert =
Ttotal

n
= O(log n).

