
University of Freiburg
Dept. of Computer Science
Prof. Dr. F. Kuhn
P. Schneider

Algorithms and Data Structures

Winter Term 2019/2020

Sample Solution Exercise Sheet 9

Remark: For this exercise, the material of the 13th video lecture is relevant.

Exercise 1: “Reverse” Connected Components

(a) Let G = (V,E) be a directed graph with n nodes and m edges given as adjacency list. Let v ∈ V
be a node. Give an algorithm with runtime O(n + m) that computes the set U = {u ∈ V :
∃ Path from u to v}, i.e., all nodes u for which a path from u to v exists.

(b) Analyze the running time and argue the correctness of your algorithm.

Sample Solution

(a) We first compute the “reverse graph” G′ = (V,E′) where (y, x) ∈ E′ if and only if (x, y) ∈ E.
More specifically we compute the adjacency list L of G′ from the adjacency list L′ of G. We
approach this by iterating through the respective lists of all nodes.

If the adjacency list L[x] of node x has a pointer to node y, we add x to L′[y]. Finally, on the G′

given by L′ we conduct a BFS (or a DFS) starting from v and return all nodes that are reached
(marked) in the process.

(b) Since a path from u to v in G becomes a path from v to u in G′ and vice versa, we will find all
nodes u that have a path to v (and not more).

Iterating through L to create L′ takes O(n+m) time. BFS (or DFS) on G′ also takes O(n+m)
time. This is also asymptotically optimal since have to look at each node and edge at least once.

Exercise 2: Priority Queue with Decrease Key Operation

A heap data structure offers a simple implementation of the functionality of a priority queue. We
already know that we can insert elements with keys (i.e. priorities) into a binary tree and then call
heapify to make a valid heap out of it. We can also insert elements individually using the insert

operation. Furthermore, we can get the element with the highest priority (that is, the one with the
smallest key) with the delete-min operation.
For Dijkstras’ algorithm, we also require an operation decrease-key(p, k) which gets a pointer p to
directly access an element in the binary tree, and a key k to which the key of that element is lowered,
provided that it is not already lower and subsequently restores the heap condition. Give pseudocode
that implements decrease-key(p, k) in O(log n) time if n is the number of elements in the heap.



Sample Solution

The following operation sifts up p as long as its parent has a bigger key. We are done after at most h
loop iterations, where h is the height of the tree. Note that h ∈ O(log n). Since a swap-up(p) takes
only constant time, the runtime of decrease-key(p, k) is O(log n).

Algorithm 1 decrease-key(p, k)

if p.key ≤ k then return
else p.key ← k

prt← p.parent
while prt 6= ⊥ and prt.key > k do

swap-up(p)
prt← p.parent

Operation swap-up(p) just switches places between a node p and its parent and reattaches all respective
pointers. For the sake of completeness it is given below. Note that this becomes much easier if we
assume that the heap is given in the form of an array instead.

Algorithm 2 swap-up(p)

prt← p.parent
gprt← prt.parent
tmp← copy of node prt . For convenience create a new copy of node prt

tmp.left ← p.left . new node tmp gets p as parent and adopts p’s children
tmp.right ← p.right
tmp.parent ← p

if p = prt.left then . p adopts tmp and tmp’s other child (that was not p)
p.left ← tmp
p.right ← prt.right

else
p.right ← tmp
p.left ← prt.left

p.parent ← gprt . p’s parent is now gprt

if prt = gprt.left then gprt.left ← p . gprt adopts p as child in place of prt
else gprt.right ← p

delete prt . delete old, detached node prt

Exercise 3: Dijkstras’ Algorithm

Execute Dijkstras’ Algorithm on the following weighted, directed graph, starting at node s. Into the
table further below, write the distances from each node to s that the algorithm stores in the priority
queue after each iteration.

sa

b c

d

e

f

g

2

4

8

1 3

4

3

2

5
2

6

1

1



Initialization s a b c d e f g
δ(s, ·) = 0 ∞ ∞ ∞ ∞ ∞ ∞ ∞

1. Step (u = s) s a b c d e f g
δ(s, ·) =

2. Step (u = ) s a b c d e f g
δ(s, ·) =

3. Step (u = ) s a b c d e f g
δ(s, ·) =

4. Step (u = ) s a b c d e f g
δ(s, ·) =

5. Step (u = ) s a b c d e f g
δ(s, ·) =

6. Step (u = ) s a b c d e f g
δ(s, ·) =

7. Step (u = ) s a b c d e f g
δ(s, ·) =

8. Step (u = ) s a b c d e f g
δ(s, ·) =

Sample Solution

Initialisation s a b c d e f g
δ(s, ·) = 0 ∞ ∞ ∞ ∞ ∞ ∞ ∞

1. Step (u = s) s a b c d e f g
δ(s, ·) = 0 2 4 ∞ 8 ∞ ∞ ∞

2. Step (u = a) s a b c d e f g
δ(s, ·) = 0 2 3 ∞ 8 ∞ ∞ ∞

3. Step (u = b) s a b c d e f g
δ(s, ·) = 0 2 3 7 6 ∞ ∞ ∞

4. Step (u = d) s a b c d e f g
δ(s, ·) = 0 2 3 7 6 ∞ ∞ ∞

5. Step (u = c) s a b c d e f g
δ(s, ·) = 0 2 3 7 6 9 12 ∞

6. Step (u = e) s a b c d e f g
δ(s, ·) = 0 2 3 7 6 9 11 15

7. Step (u = f) s a b c d e f g
δ(s, ·) = 0 2 3 7 6 9 11 12

8. Step (u = g) s a b c d e f g
δ(s, ·) = 0 2 3 7 6 9 11 12

Exercise 4: More of Dijkstras’ Algorithm

In the following graph execute Dijkstras’ Algorithm starting from node s. Write the distance of each
node to s into the respective node. Mark the order in which nodes are settled by the algorithm and
mark all edges belonging to the shortest path tree.



s

1

3

5

2

1 6
8

3

2

5

4

3

7

3

1

6

1

32

5

2

Sample Solution

s

1

3

5

2

1 6
8

3

2

5

4

3

7

3

1

6

1

32

5

2

1

34

7 3

7 6

8

7 6

10

4

1

2 4

3

5

69 8

7
10

11
12

Enjoy the holidays and have a happy new year!


