
University of Freiburg
Dept. of Computer Science
Prof. Dr. F. Kuhn
P. Schneider

Algorithms and Data Structures

Winter Term 2019/2020

Sample Solution Exercise Sheet 10

Remark: For this exercise, please watch the 14th (final) video lecture.

Exercise 1: Topics for Final Lesson

In our final session (29th of January) we will have time to repeat some of the topics that you had
difficulties with. For this purpose please send me an email (philipp.schneider@cs.uni-freiburg.de) with
the topic “AD VOTE” and provide a list of three topics that you would like to repeat. From the
topics most wished for I will compile the final, 11th exercise sheet.

Exercise 2: Edit Distance

Let A = a1 . . . an, B = b1 . . . bm be two words. For k ≤ n, ` ≤ m let Ak = a1 . . . ak, B` = b1 . . . b` be
the prefixes of A und B. Let EDk,` := ED(Ak, B`) be the edit distance of Ak, B`. Use the dynamic
programming algorithm from the lecture to compute EDn,m for the inputs A = TORRENT und
B = RODENT by filling a table with values EDk,`.

Sample Solution

We fill the following table according to the following recursion given in the lecture:

EDk,` = min
(
EDk, −̀1 + 1, EDk−1,` + 1, EDk−1, −̀1 + 1ak 6=b`

)
EDk,` ε T O R R E N T

ε 0 1 2 3 4 5 6 7
R 1 1 2 2 3 4 5 6
O 2 2 1 2 3 4 5 6
D 3 3 2 2 3 4 5 6
E 4 4 3 3 3 3 4 5
N 5 5 4 4 4 4 3 4
T 6 5 5 5 5 5 4 3

Exercise 3: Binomial Coefficient

Consider the following recursive definition of the binomial coefficient(
n

k

)
=

(
n− 1

k

)
+

(
n− 1

k − 1

)
,

with base cases
(
n
0

)
=

(
n
n

)
= 1. Give an algorithm that uses the principle of dynamic programming to

compute
(
n
k

)
in O(n · k) time steps. Argue the running time of your algorithm



Sample Solution

Algorithm 1 Binom(n, k ) . global dictionary memo initialized with Null

if k = 0 or k = n then return 1 . base cases
if memo[n, k] = Null then . result not yet computed

memo[n, k]← Binom(n−1, k) + Binom(n−1, k−1) . compute partial results

return memo[n, k]

In the worst case, the routine Binom(n, k) computes all partial results Binom(m, l) for m ≤ n und
l ≤ k. However, each partial result is computed at most once before it is globally available in memo.
There are at most O(n · k) partial results, hence we call Binom(·, ·) at most O(n · k) times when
computing Binom(n, k). Each call of Binom(·, ·) takes O(1) if we neglect the time required for
sub-calls. Therefore the total time required is O(n · k).

Exercise 4: Computing Minimum Change

Assume you are a vending machine and need to output an amount N ∈ N using coins with denom-
inations c1, . . . , cn ∈ N of which you have an unlimited supply. To make things simpler you do not
actually have to compute the minimum cardinality set of coins that make up the amount N , but only
the size of such a set (if it exists). Give an algorithm with runtime O(n ·N) that uses the principle of
dynamic programming to compute the number of coins required to return an amount N , or ∞ if the
amount can not be written as a weighted sum of c1, . . . , cn. Argue the runtime of your algorithm.

Sample Solution

We compute the minimum number of coins C(x) that sum up to x for all x ∈ [N ] := {1, . . . ,N}. If we
know the solution for smaller amounts, then we can easily compute the amount of coins for N with
the following recursion:

C(N) := min
i∈[n]

C(N−ci) + 1.

As base cases we set C(0) := 0 and C(x) =∞ for all x < 0.

Algorithm 2 Change(N) . global dictionary memo initialized with Null

if N = 0 then return 0 . base cases
if N < 0 then return ∞
if memo[N ] = Null then . result not yet computed

memo[N ]← mini∈[n] Change(N−ci) + 1 . compute partial results

return memo[N ]

Each recursion takes at most O(n) time for computing the minimum over n values. Moreover we can
have at most N recursions, since in each recursion we compute one result and after N recursions all
results are computed and available in the dictionary and from then on (at the latest) we can look
results up directly from the dictionary. Hence in total the algorithm takes O(n ·N) time.


