
University of Freiburg
Dept. of Computer Science
Prof. Dr. F. Kuhn

Algorithms and Data Structures

Winter Term 2020/2021

Exercise Sheet 2

Exercise 1: O-notation
Prove or disprove the following statements. Use the set definition of the O-notation (lecture slides
week 2, slides 11 and 12).

(a) 4n3 + 8n2 + n ∈ O(n3)

(b) 2n ∈ o(n!)

(c) 2 log n ∈ Ω((log n)2)

(d) max{f(n), g(n)} ∈ Θ(f(n) + g(n)) for non-negative functions f and g.

Exercise 2: Sorting by asymptotic growth

Sort the following functions by their asymptotic growth. Write g <O f if g ∈ O(f) and f /∈ O(g).
Write g =O f if f ∈ O(g) and g ∈ O(f) (no proof needed).

√
n 2n n! log(n3)

3n n100 log(
√
n) (log n)2

log n 10100n (n + 1)! n log n

2(n
2) nn

√
log n (2n)2

Exercise 3: Stable Sorting

A sorting algorithm is called stable if elements with the same key remain in the same order. E.g.,
assume you want to sort the following strings where the sorting key is the first letter by alphabetic
order :

[“tuv”, “adr”, “bbc”, “tag”, “taa”, “abc”, “sru”, “bcb”]

A stable sorting algorithm must generate the following output:

[“adr”, “abc”, “bbc”, “bcb”, “sru”, “tuv”, “tag”, “taa”]

A sorting algorithm is not stable (with respect to the sorting key) if it outputs, e.g., the following:

[“abc”, “adr”, “bbc”, “bcb”, “sru”, “taa”, “tag”, “tuv”]

(a) Which sorting algorithms from the lecture (except CountingSort) are not stable? Prove your
statement by giving an appropriate example.

(b) Describe a method to make any sorting algorithm stable, without changing the asymptotic runtime.
Explain.



Exercise 4: Running time

Give an asymptotically tight upper bound for the running time of the following algorithm as a function
of n.

s← 0
for i = 1 to n do

j = 1
while j < i do

s← s + i · j
j ← 2 · j


