

Algorithms and Data Structures Winter Term 2020/2021 Exercise Sheet 5

Exercise 1: Bad Hash Functions

Let m be the size of a hash table and $M \gg m$ the largest possible key of the elements we want to store in the table. The following "hash functions" are poorly chosen. Explain for each function why it is not a suitable hash function.

- (a) $h: x \mapsto \lfloor \frac{x}{m} \rfloor \mod m$
- (b) $h: x \mapsto (2x+1) \mod m$ (*m* even).
- (c) $h: x \mapsto (x \mod m) + \lfloor \frac{m}{x+1} \rfloor$
- (d) For each calculation of the hash value of x one chooses for h(x) a uniform random number from $\{0, \ldots, m-1\}$
- (e) $h: x \mapsto \lfloor \frac{M}{x \cdot p \mod M} \rfloor \mod m$, where p is prime and $\frac{M}{2}$
- (f) For a set of "good" hash functions h_1, \ldots, h_ℓ with $\ell \in \Theta(\log m)$, we first compute $h_1(x)$, then $h_2(h_1(x))$ etc. until $h_\ell(h_{\ell-1}(\ldots h_1(x))\ldots)$. That is, the function is $h: k \mapsto h_\ell(h_{\ell-1}(\ldots h_1(x))\ldots)$

Exercise 2: (No) Families of Universal Hash Functions

- (a) Let $S = \{0, \ldots, M-1\}$ and $\mathcal{H}_1 := \{h : x \mapsto a \cdot x^2 \mod m \mid a \in S\}$. Show that H_1 is not *c*-universal for *constant* $c \geq 1$ (that is *c* is fixed and must not depend on *m*).
- (b) Let *m* be a *prime* and let $k = \lfloor \log_m M \rfloor$. We consider the keys $x \in S$ in base *m* presentation, i.e., $x = \sum_{i=0}^{k} x_i m^i$. Consider the set of functions from the lecture (week 5, slide 15)

$$\mathcal{H}_2 := \Big\{ h : x \mapsto \sum_{i=0}^k a_i x_i \mod m \mid a_i \in \{0, \dots, m-1\} \Big\}.$$

Show that \mathcal{H}_2 is 1-universal.

Hint: Two keys $x \neq y$ have to differ at some digit $x_j \neq y_j$ in their base m representation.