Algorithms and Data Structures

Lecture 10

Graph Algorithms III: Shortest Paths

Fabian Kuhn Algorithms and Complexity

Shortest Paths

Single Sourse Shortest Paths Problem

- Given: weighted graph G = (V, E, w), start node $s \in V$
 - We denote the weight of an edge (u, v) by w(u, v)
 - Assumption for now: $\forall e \in E: w(e) \ge 0$
- Goal: Find shortest paths / distances from s to all nodes
 - Distance from s to $v: d_G(s, v)$ (length of a shortest path)

Optimality of Subpaths

Lemma: If $v_0, v_1, ..., v_k$ is a shortest path from v_0 to v_k , then it holds for all $0 \le i \le j \le k$ that the subpath $v_i, v_{i+1}, ..., v_j$ is also a shortest path from v_i to v_j .

Shortest path from v_0 to v_k :

- Subpath from v_i to v_j is also a shortest path.
 - Otherwise, one could replace the path from v_i to v_j by the shortest path from v_i to v_j .
 - If by doing this, nodes are visited multiple time, one can cut out cycles and obtains an even shorter path.
- Lemma also holds for negative edge weights,
 - as long as the graph does not contain negative cycles.

Shortest-Path Tree

- Spanning tree that is rooted at node *s* and that contains shortest paths from *s* to all other nodes.
 - Such a tree always exists (follows from the optimality of subpaths)
- For unweighted graphs: BFS spanning tree
- Goal: Find a shortest path tree

Dijkstra's Algorithm: Idea

Algorithm by Edsger W. Dijkstra (published in 1959)

Idea:

• We start at *s* and build the spanning tree in a step-by-step manner.

Invariant:

Algorithm always has a tree rooted at *s*, which is a subtree of a shortest path tree.

- Goal: In each step of the algorithm, add one node
 - Initially: subtree only consists of s (trivially satisfies invariant...)
 - 1st step: Because of the optimality of subpaths, there must be a shortest path consisting of a single edge...
 - Always add the remaining node at the smallest distance from *s*.

22

Dijkstra's Algorithm : One Step

Given: A tree T that is rooted in s, such that T is a subtree of a shortest paths tree for node s in G. (nodes of T : S)

How can we extend *T* by a single node?

S : nodes in the tree T

N(S) : nodes that can be added to the tree directly.

To add $v \in N(S)$ it most hold that $d_G(s, v) = \min_{u \in S} \{ d_G(s, u) + w(u, v) \}$

We will see that this always holds for $v \in N(S)$ with minimum distance $d_G(s, v)$ from s.

52

Dijkstra's Algorithm : One Step

Given: T is subtree of a shortest path tree for s in G.

Lemma: For a node $v \in N(S)$ and an edge (u, v) with $u \in S$ such that $d_G(s, u) + w(u, v)$ is minimized, it holds that $d_G(s, v) = d_G(s, u) + w(u, v)$

Consider the s-v path that we obtain in this way:

$$S \longrightarrow \cdots \longrightarrow u \longrightarrow v N(S)$$

Assume that there is a shorter path:

$$S \longrightarrow x \longrightarrow y \longrightarrow y \longrightarrow v$$

Because there are no negative edge weights, we therefore have

$$d_G(s, x) + w(x, y) \le d_G(s, v) < d_G(s, u) + w(u, v)$$

Invariant:

Algorithm always has a tree T = (S, A) rooted at s, which is a subtree of a shortest path tree of G.

- At the beginning, we have $T = (\{s\}, \emptyset)$
- For each node $v \notin S$, one at all times computes

$$\delta(s,v) \coloneqq \min_{u \in S \cap N_{\text{in}}(v)} d_G(s,u) + w(u,v)$$

- as well as the incoming neighbor $u =: \alpha(v)$ that minimized the expression...

- $\delta(s, v)$ corresponds to an s-v path $\Rightarrow \delta(s, v) \ge d_G(s, v)$
- Lemma on last slide: For minimum $\delta(s, v)$, we have: $\delta(s, v) = d_G(s, v)$

Dijkstra's Algorithm

Initialization $T = (\emptyset, \emptyset)$

- $\delta(s,s) = 0$, and $\delta(s,v) = \infty$ for all $v \neq s$
- $\alpha(v) = \text{NULL for all } v \in V$

Iteration Step

• Choose a node v with smallest

$$\delta(s,v) \coloneqq \min_{u \in S \cap N_{\text{in}}(v)} d_G(s,u) + w(u,v)$$

S

• Go through all out-neighbors $x \in V \setminus S$ and set

$$\delta(s, x) \coloneqq \min\{\delta(s, x), \delta(s, v) + w(v, x)\}$$

- If $\delta(s, x)$ is decreased, set $\alpha(x) = v$

• Add node v and edge $(\alpha(v), v)$ to the tree T.

update $\delta(s, x)$

х

BURG

IBURG

BURG

BURG

BURG

BURG

UNI FREIBURG

BURG

Dijkstra's Algorithm

Initialization $T = (\emptyset, \emptyset)$

- $\delta(s,s) = 0$, and $\delta(s,v) = \infty$ for all $v \neq s$
- $\alpha(v) = \text{NULL for all } v \in V$

Iteration Step

• Choose a node v with smallest

$$\delta(s,v) \coloneqq \min_{u \in S \cap N_{\text{in}}(v)} d_G(s,u) + w(u,v)$$

S

• Go through all out-neighbors $x \in V \setminus S$ and set

 $\delta(s, x) \coloneqq \min\{\delta(s, x), \delta(s, v) + w(v, x)\}$

- If $\delta(s, x)$ is decreased, set $\alpha(x) = v$

• Add node v and edge $(\alpha(v), v)$ to the tree T.

ŚŻ

update $\delta(s, x)$

Х

Similar to the MST algorithm of Prim!

Reminder : Prim's MST Algorithm

```
H = \text{new priority queue; } A = \emptyset
for all u \in V \setminus \{s\} do
H.\text{insert}(u, \infty); \alpha(u) = \text{NULL}
H.\text{insert}(s, 0)
```

```
while H is not empty do
    u = H.deleteMin()
    for all unmarked neighbors v of u do
         if w(\{u, v\}) < d(v) then
              H.decreaseKey(v, w(\{u, v\}))
              \alpha(v) = u
    u.marked = true
    if u \neq s then A = A \cup \{\{u, \alpha(u)\}\}\
```

ZÄ

Dijkstra's Algorithm : Implementation

while *H* is not empty do

u = H.deleteMin()

for all unmarked out-neighbors v of u do if $\delta(s,u) + w(u,v) < \delta(s,v)$ then $\delta(s,v) = \delta(s,u) + w(u,v)$ $H.decreaseKey(v, \delta(s,v))$ $\alpha(v) = u$ u.marked = trueif $u \neq s$ then $A = A \cup \{(\alpha(u), u)\}$ Zä

Dijkstra's Algorithm: Running Time

- Algorithm implementation is almost identical to the implementation of Prim's MST algorithm.
- Number of heap operations:

create: 1, insert: n, deleteMin: n, decreaseKey: $\leq m$

- Or alternatively without decrease-key: O(m) insert and deleteMin Op.
- Running time with binary heap:

 $O(m \log n)$

• Running time with Fibonacci heap:

 $O(m + n \log n)$

N II

Negative Edge Weights

- Shortest paths can also be defined for graphs with negative edge weights.
 - Shortest path is defined if there no shorter way, even if nodes can be visited multiple times.

Example

Negative Edge Weights

Lemma: In a directed, weighted graph *G*, there is a shortest path from *s* to *v* if and only if there is no there is no negative cycle that is reachable from *s* and from which one can reach *v*.

Also holds for undirected graphs if edges {u, v} are considered as 2 directed edges (u, v) and (v, u).

Dijkstra's Algorithm and Negative Weights

Does Dijkstra's algorithm work with negative edge weights?

• Answer: no

- To simplify, we only compute the distances $d_G(s, v)$ Assumption:
- For all nodes v: algorithm has dist. estimate $\delta(s, v) \ge d_G(s, v)$
- Initialization: $\delta(s,s) = 0$, $\delta(s,v) = \infty$ for $v \neq s$

Observation:

If (u, v) ∈ E such that δ(s, u) + w(u, v) < δ(s, v), then we can decrease (and thus improve) δ(s, v) because

$$d_{G}(s, v) \le d_{G}(s, u) + w(u, v)$$
$$\le \delta(s, u) + w(u, v)$$

Bellman-Ford Algorithm

Consider all edges (u, v) and try to improve δ(s, v),
 – until all distances are correct (∀v ∈ V: δ(s, v) = d_G(s, v))

```
\delta(s,s) \coloneqq 0; \ \forall v \in V \setminus \{s\} : \delta(s,v) \coloneqq \infty
```

repeat

for all
$$(u, v) \in E$$
 do
if $\delta(s, u) + w(u, v) < \delta(s, v)$ then
 $\delta(s, v) \coloneqq \delta(s, u) + w(u, v)$
until $\forall v \in V$: $\delta(s, v) = d_G(s, v)$

- How many repetitions are necessary?
 - Shortest paths consisting of one edge
 - Shortest paths consisting of two edges

Shortest paths consisting of k edges

- \Rightarrow 1 repetitions
- \Rightarrow 2 repetitions
- $\Rightarrow k$ repetitions

^{— ...}

Bellman-Ford Algorithm

$$\delta(s,s) \coloneqq 0; \forall v \in V \setminus \{s\} : \delta(s,v) \coloneqq \infty$$

for i := 1 to n-1 do
for all $(u,v) \in E$ do
if $\delta(s,u) + w(u,v) < \delta(s,v)$ then
 $\delta(s,v) \coloneqq \delta(s,u) + w(u,v)$

After *i* repetitions, we have $\delta(s, v) \leq d_G^{(i)}(s, v)$, where $d_G^{(i)}(s, v)$ is the length of a shortest path consisting of at most *i* edges.

• Follows by induction on *i*:

$$- i = 0: \delta(s, s) = d_G^{(0)}(s, s) = 0, v \neq s \implies \delta(s, v) = d_G^{(0)}(s, v) = \infty$$

- i > 0:

$$d_{G}^{(i)}(s,v) = \min\left\{d_{G}^{(i-1)}(s,v), \min_{u \in N^{in}(v)} d_{G}^{(i-1)}(s,u) + w(u,v)\right\}$$

(shortest path consists of $\leq i - 1$ edges or of exactly *i* edges)

Bellman-Ford Algorithm

$$\delta(s,s) \coloneqq 0; \forall v \in V \setminus \{s\} : \delta(s,v) \coloneqq \infty$$

for i := 1 to n-1 do
for all $(u,v) \in E$ do
if $\delta(s,u) + w(u,v) < \delta(s,v)$ then
 $\delta(s,v) \coloneqq \delta(s,u) + w(u,v)$

Theorem: If the graph has no negative cycles that are reachable from *s*, at the end all distances are computed correctly.

• At the end, we have for all $v \in V$:

$$\delta(s,v) \le d_G^{(n-1)}(s,v)$$

• Because every path consists of $\leq n - 1$ edges, we also have

$$d_G^{(n-1)}(s,v) = d_G(s,v)$$

Detecting Negative Cycles

 We will see: If there is a (from s reachable) negative cycle, then[¬] there is an improvement for some edge:

 $\exists (u,v) \in E : \delta(s,u) + w(u,v) < \delta(s,v)$

Bellman-Ford Algorithm

```
for i := 1 to n-1 do

for all (u,v) \in E do

if \delta(s,u) + w(u,v) < \delta(s,v) then

\delta(s,v) \coloneqq \delta(s,u) + w(u,v)

for all (u,v) \in E do

if \delta(s,u) + w(u,v) < \delta(s,v) then

return false
```

return true

Detecting Negative Cycles

Lemma: If G contains a negative cycles that is reachable from s, then \supset the Bellman-Ford algorithm returns false.

neg. cycle
$$\Rightarrow \sum_{i=1}^{k} w(v_{i-1}, v_i) \stackrel{!}{<} 0$$

reachable from $s \Longrightarrow \delta(s, v_i) \neq \infty$

Proof by contradiction:

• Assumption : $\forall i \in \{1, \dots, k\} : \delta(s, v_{i-1}) + w(v_{i-1}, v_i) \ge \delta(s, v_i)$

$$\sum_{i=1}^{k} \delta(s, v_{i}) \leq \sum_{i=1}^{k} \left(\delta(s, v_{i-1}) + w(v_{i-1}, v_{i}) \right) < 0$$

= = =
$$\sum_{i=1}^{k} \delta(s, v_{i-1}) + \sum_{i=1}^{k} w(v_{i-1}, v_{i})$$

Fabian Kuhn

Bellman-Ford Algorithm : Shortest Paths

A shortest path tree can be computed in the usual way.

Initialization:

- $\delta(s,s) = 0$, für $v \neq s : \delta(s,v) =$ NULL
- $\alpha(s) = \text{NULL}$, for $v \neq s : \alpha(v) = \text{NULL}$

In every loop iteration:

if
$$\delta(s,u) + w(u,v) < \delta(s,v)$$
 ther
 $\delta(s,v) \coloneqq \delta(s,u) + w(u,v)$
 $\alpha(v) \coloneqq u$

- At the end, $\alpha(v)$ points to a parent in the shortest path tree
 - if there are no negative cycles...

Zä

Bellman-Ford Algorithm : Summary

Theorem: If there is a negative cycle that is reachable from s, the Bellman-Ford algorithm detects this. If no such cycle exists, the Bellman-Ford algorithm computes a shortest path tree in time $O(|V| \cdot |E|)$.

- **Correctness:** already proven
- Running time:
 - -n-1+1 loop iterations
 - In every loop iteration, we go once through all the edges.
- **Remark:** One can adapt the algorithm such that it computes a shortest path for all *v*, for shich such a path from *s* existsts (and it detects if no shortest path exists).
 - in the same asymptotic running time

Z

Routing Paths in Networks

Goal: Optimal routing paths for some destination t

- For every node, we want to know to which neighbor one has to send a message destined at node *t*.
- This corresponds to computing a shortest path tree if all edges are reversed (transpose graph)

Algorithm:

- Nodes remember tha current distance $\delta(u, t)$ and the currently best neighbor.
- All nodes in parallel check if there is an improvement for some neighbor:

 $\exists (u,v) \in E : w(u,v) + \delta(v,t) < \delta(u,t)$

• Corresponds to a parallel variant of the Bellman-Ford algorithm

• all pairs shortest paths problem

Compute single-source shortest paths for all nodes

• Dijkstra algorithm with all nodes:

Running time: $n \cdot O(\text{Running time Dijkstra}) \in O(mn + n^2 \log n)$

- Problem: only works for non-negative edge weights
- Bellman-Ford algorithm with all nodes: Running time: $n \cdot O(\text{Running time BF}) \in O(mn^2) \in O(n^4)$
 - Problem: slow...
 - If the Bellman-Ford algorithm is carried out for all nodes, the running time can be improved to $O(n^3 \cdot \log n)$.
 - If all $d_G^{(i)}(u, v)$ -distances are known, one can directly compute the $d_G^{(2i)}(u, v)$ -distances in one iteration.
 - Further details and discussion of other algorithms in various text books.

N.