Algorithms and Data Structures

Lecture 10

Graph Algorithms III:
Shortest Paths

Fabian Kuhn

Algorithms and Complexity

Shortest Paths

Single Sourse Shortest Paths Problem

- Given: weighted graph $G=(V, E, w)$, start node $s \in V$
- We denote the weight of an edge (u, v) by $w(u, v)$
- Assumption for now: $\forall e \in E: w(e) \geq 0$
- Goal: Find shortest paths / distances from s to all nodes
- Distance from s to $v: d_{G}(s, v) \quad$ (length of a shortest path)

Distance from node 1 to node $7: 10$

Optimality of Subpaths

Lemma: If $v_{0}, v_{1}, \ldots, v_{k}$ is a shortest path from v_{0} to v_{k}, then it holds for all $0 \leq i \leq j \leq k$ that the subpath $v_{i}, v_{i+1}, \ldots, v_{j}$ is also a shortest path from v_{i} to v_{j}.

Shortest path from $\boldsymbol{v}_{\mathbf{0}}$ to $\boldsymbol{v}_{\boldsymbol{k}}$:

- Subpath from v_{i} to v_{j} is also a shortest path.
- Otherwise, one could replace the path from v_{i} to v_{j} by the shortest path from v_{i} to v_{j}.
- If by doing this, nodes are visited multiple time, one can cut out cycles and obtains an even shorter path.
- Lemma also holds for negative edge weights,
- as long as the graph does not contain negative cycles.

Shortest-Path Tree

- Spanning tree that is rooted at node s and that contains shortest paths from s to all other nodes.
- Such a tree always exists (follows from the optimality of subpaths)
- For unweighted graphs: BFS spanning tree
- Goal: Find a shortest path tree

Dijkstra's Algorithm: Idea

- Algorithm by Edsger W. Dijkstra (published in 1959)

Idea:

- We start at s and build the spanning tree in a step-by-step manner.

Invariant:

Algorithm always has a tree rooted at s, which is a subtree of a shortest path tree.

- Goal: In each step of the algorithm, add one node
- Initially: subtree only consists of s (trivially satisfies invariant...)
- $1^{\text {st }}$ step: Because of the optimality of subpaths, there must be a shortest path consisting of a single edge...
- Always add the remaining node at the smallest distance from s.

Dijkstra's Algorithm : One Step

Given: A tree T that is rooted in s, such that T is a subtree of a shortest paths tree for node s in G. (nodes of $T: S$)

How can we extend T by a single node?

$S: \quad$ nodes in the tree T
$N(S)$: nodes that can be added to the tree directly.

To add $v \in N(S)$ it most hold that

$$
d_{G}(s, v)=\min _{u \in S}\left\{d_{G}(s, u)+w(u, v)\right\}
$$

We will see that this always holds for $v \in N(S)$ with minimum distance $d_{G}(s, v)$ from s.

Dijkstra’s Algorithm : One Step

Given: T is subtree of a shortest path tree for s in G.
Lemma: For a node $v \in N(S)$ and an edge (u, v) with $u \in S$ such that $d_{G}(s, u)+w(u, v)$ is minimized, it holds that

$$
d_{G}(s, v)=d_{G}(s, u)+w(u, v)
$$

Consider the $s-v$ path that we obtain in this way:

Assume that there is a shorter path:

- Because there are no negative edge weights, we therefore have

$$
d_{G}(s, x)+w(x, y) \leq d_{G}(s, v)<d_{G}(s, u)+w(u, v)
$$

Dijkstra's Algorithm

Invariant:

Algorithm always has a tree $T=(S, A)$ rooted at s, which is a subtree of a shortest path tree of G.

- At the beginning, we have $T=(\{s\}, \emptyset)$
- For each node $v \notin S$, one at all times computes

$$
\delta(s, v):=\min _{u \in S \cap N_{\text {in }}(v)} d_{G}(s, u)+w(u, v)
$$

- as well as the incoming neighbor $u=: \alpha(v)$ that minimized the expression...
- $\delta(s, v)$ corresponds to an $s-v$ path $\Longrightarrow \delta(s, v) \geq d_{G}(s, v)$
- Lemma on last slide:

For minimum $\delta(s, v)$, we have: $\delta(s, v)=d_{G}(s, v)$

Dijkstra's Algorithm

Initialization $\boldsymbol{T}=(\varnothing, \varnothing)$

- $\delta(s, s)=0$, and $\delta(s, v)=\infty$ for all $v \neq s$
- $\alpha(v)=$ NULL for all $v \in V$

Iteration Step

- Choose a node v with smallest

$$
\delta(s, v):=\min _{u \in S \cap N_{\text {in }}(v)} d_{G}(s, u)+w(u, v)
$$

- Go through all out-neighbors $x \in V \backslash S$ and set

$$
\delta(s, x):=\min \{\delta(s, x), \delta(s, v)+w(v, x)\}
$$

- If $\delta(s, x)$ is decreased, set $\alpha(x)=v$
- Add node v and edge $(\alpha(v), v)$ to the tree T.

Dijkstra’s Algorithm: Example

Dijkstra's Algorithm

Initialization $\boldsymbol{T}=(\varnothing, \varnothing)$

- $\delta(s, s)=0, \quad$ and $\delta(s, v)=\infty$ for all $v \neq s$
- $\alpha(v)=$ NULL for all $v \in V$

Iteration Step

- Choose a node v with smallest

$$
\delta(s, v):=\min _{u \in S \cap N_{\text {in }}(v)} d_{G}(s, u)+w(u, v)
$$

- Go through all out-neighbors $x \in V \backslash S$ and set

$$
\delta(s, x):=\min \{\delta(s, x), \delta(s, v)+w(v, x)\}
$$

- If $\delta(s, x)$ is decreased, set $\alpha(x)=v$
- Add node v and edge $(\alpha(v), v)$ to the tree T.

Similar to the MST algorithm of Prim!

Reminder : Prim's MST Algorithm

$H=$ new priority queue; $A=\varnothing$
for all $u \in V \backslash\{s\}$ do $H . \operatorname{insert}(u, \infty) ; \alpha(u)=$ NULL
H.insert(s, 0)
while H is not empty do
$u=\mathrm{H}$. deleteMin()
for all unmarked neighbors v of u do if $w(\{u, v\})<d(v)$ then
$H . \operatorname{decreaseKey}(v, w(\{u, v\}))$
$\alpha(v)=u$
u.marked = true
if $u \neq s$ then $A=A \cup\{\{u, \alpha(u)\}\}$

Dijkstra's Algorithm : Implementation

$H=$ new priority queue; $A=\varnothing$
for all $u \in V \backslash\{s\}$ do H. insert $(u, \infty) ; \delta(s, u)=\infty ; \alpha(u)=$ NULL H.insert(s, 0)
while H is not empty do
$u=$ H.deleteMin()
for all unmarked out-neighbors v of u do if $\delta(s, u)+w(u, v)<\delta(s, v)$ then $\delta(s, v)=\delta(s, u)+w(u, v)$ $H . \operatorname{decreaseKey}(v, \delta(s, v))$ $\alpha(v)=u$
u.marked = true
if $u \neq s$ then $A=A \cup\{(\alpha(u), u)\}$

Dijkstra's Algorithm: Running Time

- Algorithm implementation is almost identical to the implementation of Prim's MST algorithm.
- Number of heap operations:
create: 1 , insert: n, deleteMin: n, decreaseKey: $\leq m$
- Or alternatively without decrease-key: $O(m)$ insert and deleteMin Op.
- Running time with binary heap:
$O(m \log n)$
- Running time with Fibonacci heap:

$$
O(m+n \log n)
$$

Negative Edge Weights

- Shortest paths can also be defined for graphs with negative edge weights.
- Shortest path is defined if there no shorter way, even if nodes can be visited multiple times.

Example

Negative Edge Weights

Lemma: In a directed, weighted graph G, there is a shortest path from s to v if and only if there is no there is no negative cycle that is reachable from s and from which one can reach v.

- Also holds for undirected graphs if edges $\{u, v\}$ are considered as 2 directed edges (u, v) and (v, u).

> no shortest path from u to v

We can restrict our attention to simple path. There are only finitely many such path.

Dijkstra's Algorithm and Negative Weights

Does Dijkstra's algorithm work with negative edge weights?

- Answer: no

Bellman-Ford Algorithm

- To simplify, we only compute the distances $d_{G}(s, v)$

Assumption:

- For all nodes v : algorithm has dist. estimate $\boldsymbol{\delta}(\boldsymbol{s}, \boldsymbol{v}) \geq \boldsymbol{d}_{\boldsymbol{G}}(\boldsymbol{s}, \boldsymbol{v})$
- Initialization: $\delta(s, s)=0, \delta(s, v)=\infty$ for $v \neq s$

Observation:

- If $(u, v) \in E$ such that $\delta(s, u)+w(u, v)<\delta(s, v)$, then we can decrease (and thus improve) $\delta(s, v)$ because

$$
\begin{aligned}
\boldsymbol{d}_{G}(\boldsymbol{s}, \boldsymbol{v}) & \leq d_{G}(s, u)+w(u, v) \\
& \leq \boldsymbol{\delta}(\boldsymbol{s}, \boldsymbol{u})+\boldsymbol{w}(\boldsymbol{u}, \boldsymbol{v})
\end{aligned}
$$

Bellman-Ford Algorithm

- Consider all edges (u, v) and try to improve $\delta(s, v)$,
- until all distances are correct $\left(\forall v \in V: \delta(s, v)=d_{G}(s, v)\right)$
$\delta(s, s):=0 ; \forall v \in V \backslash\{s\}: \delta(s, v):=\infty$
repeat
for all $(u, v) \in E$ do

$$
\text { if } \begin{gathered}
\delta(s, u)+w(u, v)<\delta(s, v) \text { then } \\
\delta(s, v):=\delta(s, u)+w(u, v)
\end{gathered}
$$

until $\forall v \in V: \delta(s, v)=d_{G}(s, v)$

- How many repetitions are necessary?
- Shortest paths consisting of one edge
$\Rightarrow 1$ repetitions
- Shortest paths consisting of two edges $\quad \Rightarrow 2$ repetitions
- Shortest paths consisting of k edges
$\Rightarrow k$ repetitions

Bellman-Ford Algorithm

$\delta(s, s):=0 ; \forall v \in V \backslash\{s\}: \delta(s, v):=\infty$
for i := 1 to $\mathrm{n}-1$ do
for all $(u, v) \in E$ do

$$
\begin{gathered}
\text { if } \delta(s, u)+w(u, v)<\delta(s, v) \text { then } \\
\delta(s, v):=\delta(s, u)+w(u, v)
\end{gathered}
$$

After i repetitions, we have $\delta(s, v) \leq \boldsymbol{d}_{G}^{(i)}(\boldsymbol{s}, v)$, where $d_{G}^{(i)}(s, v)$ is the length of a shortest path consisting of at most i edges.

- Follows by induction on \boldsymbol{i} :

$$
\begin{aligned}
& -i=0: \delta(s, s)=d_{G}^{(0)}(s, s)=0, v \neq s \Rightarrow \delta(s, v)=d_{G}^{(0)}(s, v)=\infty \\
& -i>0: \\
& d_{G}^{(i)}(s, v)=\min \left\{d_{G}^{(i-1)}(s, v) \min _{u \in N^{n}(v)} d_{G}^{(i-1)}(s, u)+w(u, v)\right\}
\end{aligned}
$$

(shortest path consists of $\leq i-1$ edges or of exactly i edges)

Bellman-Ford Algorithm

$\delta(s, s):=0 ; \forall v \in V \backslash\{s\}: \delta(s, v):=\infty$
for $\mathrm{i}:=1$ to $\mathrm{n}-1$ do
for all $(u, v) \in E$ do

$$
\text { if } \begin{gathered}
\delta(s, u)+w(u, v)<\delta(s, v) \text { then } \\
\delta(s, v):=\delta(s, u)+w(u, v)
\end{gathered}
$$

Theorem: If the graph has no negative cycles that are reachable from s, at the end all distances are computed correctly.

- At the end, we have for all $v \in V$:

$$
\delta(s, v) \leq d_{G}^{(n-1)}(s, v)
$$

- Because every path consists of $\leq n-1$ edges, we also have

$$
d_{G}^{(n-1)}(s, v)=d_{G}(s, v)
$$

Detecting Negative Cycles

- We will see: If there is a (from s reachable) negative cycle, then there is an improvement for some edge:

$$
\exists(u, v) \in E: \delta(s, u)+w(u, v)<\delta(s, v)
$$

Bellman-Ford Algorithm

for $\mathrm{i}:=1$ to $\mathrm{n}-1$ do
for all $(u, v) \in E$ do
if $\delta(s, u)+w(u, v)<\delta(s, v)$ then $\delta(s, v):=\delta(s, u)+w(u, v)$
for all $(u, v) \in E$ do
if $\delta(s, u)+w(u, v)<\delta(s, v)$ then
return false
return true

Detecting Negative Cycles

Lemma: If G contains a negative cycles that is reachable from s, then the Bellman-Ford algorithm returns false.

reachable from $s \Longrightarrow \delta\left(s, v_{i}\right) \neq \infty$

Proof by contradiction:

- Assumption : $\forall i \in\{1, \ldots, k\}: \delta\left(s, v_{i-1}\right)+w\left(v_{i-1}, v_{i}\right) \geq \delta\left(s, v_{i}\right)$

$$
\begin{aligned}
\sum_{i=1}^{k} \delta\left(s, v_{i}\right) & \leq \sum_{i=1}^{k}\left(\delta\left(s, v_{i-1}\right)+w\left(v_{i-1}, v_{i}\right)\right) \\
= & \sum_{i=1}^{k} \delta\left(s, v_{i-1}\right)+\sum_{i=1}^{k} w\left(v_{i-1}, v_{i}\right)
\end{aligned}
$$

Bellman-Ford Algorithm : Shortest Paths

A shortest path tree can be computed in the usual way.
Initialization:

- $\delta(s, s)=0$, für $v \neq s: \delta(s, v)=$ NULL
- $\alpha(s)=$ NULL, for $v \neq s: \alpha(v)=$ NULL

In every loop iteration:

$$
\text { if } \begin{aligned}
& \delta(s, u)+w(u, v)<\delta(s, v) \text { then } \\
& \delta(s, v):=\delta(s, u)+w(u, v) \\
& \alpha(v):=u
\end{aligned}
$$

- At the end, $\alpha(v)$ points to a parent in the shortest path tree
- if there are no negative cycles...

Bellman-Ford Algorithm : Summary

Theorem: If there is a negative cycle that is reachable from s, the Bellman-Ford algorithm detects this. If no such cycle exists, the Bellman-Ford algorithm computes a shortest path tree in time $O(|V| \cdot|E|)$.

- Correctness: already proven
- Running time:
$-n-1+1$ loop iterations
- In every loop iteration, we go once through all the edges.
- Remark: One can adapt the algorithm such that it computes a shortest path for all v, for shich such a path from s existsts (and it detects if no shortest path exists).
- in the same asymptotic running time

Routing Paths in Networks

Goal: Optimal routing paths for some destination t

- For every node, we want to know to which neighbor one has to send a message destined at node t.
- This corresponds to computing a shortest path tree if all edges are reversed (transpose graph)

Algorithm:

- Nodes remember tha current distance $\delta(u, t)$ and the currently best neighbor.
- All nodes in parallel check if there is an improvement for some neighbor:

$$
\exists(u, v) \in E: w(u, v)+\delta(v, t)<\delta(u, t)
$$

- Corresponds to a parallel variant of the Bellman-Ford algorithm

Shortest Paths Between All Node Pairs

- all pairs shortest paths problem

Compute single-source shortest paths for all nodes

- Dijkstra algorithm with all nodes:

Running time: $n \cdot O$ (Running time Dijkstra) $\in O\left(m n+n^{2} \log n\right)$

- Problem: only works for non-negative edge weights
- Bellman-Ford algorithm with all nodes:

Running time: $n \cdot O($ Running time BF$) \in O\left(m n^{2}\right) \in O\left(n^{4}\right)$

- Problem: slow...
- If the Bellman-Ford algorithm is carried out for all nodes, the running time can be improved to $O\left(n^{3} \cdot \log n\right)$.
- If all $d_{G}^{(i)}(u, v)$-distances are known, one can directly compute the $d_{G}^{(2 i)}(u, v)$-distances in one iteration.
- Further details and discussion of other algorithms in various text books.

