
Algorithms and ComplexityFabian Kuhn

Lecture 10

Graph Algorithms III:
Shortest Paths

Algorithms and Data Structures

Fabian Kuhn

Algorithms and Complexity

Algorithms and ComplexityFabian Kuhn

Single Sourse Shortest Paths Problem

• Given: weighted graph 𝐺 = 𝑉, 𝐸,𝑤 , start node 𝑠 ∈ 𝑉
– We denote the weight of an edge 𝑢, 𝑣 by 𝑤 𝑢, 𝑣

– Assumption for now: ∀𝑒 ∈ 𝐸:𝑤 𝑒 ≥ 0

• Goal: Find shortest paths / distances from 𝑠 to all nodes
– Distance from 𝑠 to 𝑣: 𝑑𝐺 𝑠, 𝑣 (length of a shortest path)

2

Shortest Paths

1 2

3 4

5

6

8

7

1

3

6

8
9

1

15

2

9 7

6

3

1

Distance from node 1 to node 7 : 10

𝒔

Algorithms and ComplexityFabian Kuhn

Lemma: If 𝑣0, 𝑣1, … , 𝑣𝑘 is a shortest path from 𝑣0 to 𝑣𝑘, then
it holds for all 0 ≤ 𝑖 ≤ 𝑗 ≤ 𝑘 that the subpath 𝑣𝑖 , 𝑣𝑖+1, … , 𝑣𝑗
is also a shortest path from 𝑣𝑖 to 𝑣𝑗.

Shortest path from 𝒗𝟎 to 𝒗𝒌:

• Subpath from 𝑣𝑖 to 𝑣𝑗 is also a shortest path.

– Otherwise, one could replace the path from 𝑣𝑖 to 𝑣𝑗 by the shortest path

from 𝑣𝑖 to 𝑣𝑗.

– If by doing this, nodes are visited multiple time, one can cut out cycles and
obtains an even shorter path.

• Lemma also holds for negative edge weights,
– as long as the graph does not contain negative cycles.

3

Optimality of Subpaths

𝒗𝟎 𝒗𝟏 𝒗𝒊 𝒗𝒋 𝒗𝒌

Algorithms and ComplexityFabian Kuhn

• Spanning tree that is rooted at node 𝑠 and that contains
shortest paths from 𝑠 to all other nodes.
– Such a tree always exists (follows from the optimality of subpaths)

• For unweighted graphs: BFS spanning tree

• Goal: Find a shortest path tree

4

Shortest-Path Tree

1 2

3 4

5

6

8

7

1

3

6

8
9

1

15

2

9 7

6

3

𝒔

Algorithms and ComplexityFabian Kuhn

• Algorithm by Edsger W. Dijkstra (published in 1959)

Idea:

• We start at 𝑠 and build the spanning tree in a step-by-step manner.

• Goal: In each step of the algorithm, add one node
– Initially: subtree only consists of 𝑠

(trivially satisfies invariant...)

– 1st step: Because of the optimality of subpaths, there must be a shortest
path consisting of a single edge...

– Always add the remaining node at the smallest distance from 𝑠.

5

Dijkstra’s Algorithm: Idea

Invariant:
Algorithm always has a tree rooted at 𝑠, which is a subtree
of a shortest path tree.

Algorithms and ComplexityFabian Kuhn

Given: A tree 𝑇 that is rooted in 𝑠, such that 𝑇 is a subtree of a
shortest paths tree for node 𝑠 in 𝐺. (nodes of 𝑇 : 𝑆)

How can we extend 𝑇 by a single node?

6

Dijkstra’s Algorithm : One Step

𝒔
1 4

32

2

5

𝟎

𝟏
𝟓

𝟐

𝟒

𝟔 𝟖
𝑺

𝑵(𝑺)

10

5

3

1
7

32
5

6

𝟏𝟎

𝟏𝟏

𝟖

𝟖

𝟏𝟎

𝑆 : nodes in the tree 𝑇

𝑁 𝑆 : nodes that can be added to
the tree directly.

To add 𝑣 ∈ 𝑁 𝑆 it most hold that

𝑑𝐺 𝑠, 𝑣 = min
𝑢∈𝑆

𝑑𝐺 𝑠, 𝑢 + 𝑤 𝑢, 𝑣

We will see that this always holds for
𝑣 ∈ 𝑁 𝑆 with minimum distance
𝑑𝐺 𝑠, 𝑣 from 𝑠.

Algorithms and ComplexityFabian Kuhn

Given: 𝑇 is subtree of a shortest path tree for 𝑠 in 𝐺.

Lemma: For a node 𝑣 ∈ 𝑁 𝑆 and an edge 𝑢, 𝑣 with 𝑢 ∈ 𝑆 such
that 𝑑𝐺 𝑠, 𝑢 + 𝑤 𝑢, 𝑣 is minimized, it holds that

𝒅𝑮 𝒔, 𝒗 = 𝒅𝑮 𝒔, 𝒖 + 𝒘 𝒖, 𝒗

Consider the 𝑠-𝑣 path that we obtain in this way:

Assume that there is a shorter path:

– Because there are no negative edge weights, we therefore have

𝑑𝐺 𝑠, 𝑥 + 𝑤 𝑥, 𝑦 ≤ 𝑑𝐺(𝑠, 𝑣) < 𝑑𝐺 𝑠, 𝑢 + 𝑤(𝑢, 𝑣)

7

Dijkstra’s Algorithm : One Step

𝒔 𝒗𝒖𝑺 𝑵(𝑺)

𝒔 𝒙 𝒚𝑺
𝑵(𝑺)

𝒗

Algorithms and ComplexityFabian Kuhn

• At the beginning, we have 𝑇 = 𝑠 , ∅

• For each node 𝑣 ∉ 𝑆, one at all times computes

𝛿 𝑠, 𝑣 ≔ min
𝑢∈𝑆∩𝑁in 𝑣

𝑑𝐺 𝑠, 𝑢 + 𝑤 𝑢, 𝑣

– as well as the incoming neighbor 𝑢 =: 𝛼 𝑣 that minimized the expression...

• 𝛿 𝑠, 𝑣 corresponds to an 𝑠-𝑣 path ⟹𝛿 𝑠, 𝑣 ≥ 𝑑𝐺 𝑠, 𝑣

• Lemma on last slide:

For minimum 𝜹 𝒔, 𝒗 , we have: 𝜹 𝒔, 𝒗 = 𝒅𝑮 𝒔, 𝒗

8

Dijkstra’s Algorithm

Invariant:
Algorithm always has a tree 𝑇 = (𝑆, 𝐴) rooted at 𝑠, which is
a subtree of a shortest path tree of 𝐺.

Algorithms and ComplexityFabian Kuhn

Initialization 𝑻 = ∅, ∅

• 𝛿 𝑠, 𝑠 = 0, and 𝛿 𝑠, 𝑣 = ∞ for all 𝑣 ≠ 𝑠

• 𝛼 𝑣 = NULL for all 𝑣 ∈ 𝑉

Iteration Step

• Choose a node 𝑣 with smallest

𝛿 𝑠, 𝑣 ≔ min
𝑢∈𝑆∩𝑁in 𝑣

𝑑𝐺 𝑠, 𝑢 + 𝑤 𝑢, 𝑣

• Go through all out-neighbors 𝑥 ∈ 𝑉 ∖ 𝑆 and set

𝛿 𝑠, 𝑥 ≔ min 𝛿 𝑠, 𝑥 , 𝛿 𝑠, 𝑣 + 𝑤 𝑣, 𝑥
– If 𝛿 𝑠, 𝑥 is decreased, set 𝛼 𝑥 = 𝑣

• Add node 𝑣 and edge 𝛼 𝑣 , 𝑣 to the tree 𝑇.

9

Dijkstra’s Algorithm

𝒔

𝒗

𝒙
update 𝛿 𝑠, 𝑥

Algorithms and ComplexityFabian Kuhn 10

Dijkstra’s Algorithm: Example

∞

𝟎

∞

∞

∞

∞

∞

∞

∞

∞

∞

3

13
4

9

1

10

32

23

3

3

8
2

20

118

17

1

199

1

6 2
2

Algorithms and ComplexityFabian Kuhn 11

Dijkstra’s Algorithm: Example

𝟏

𝟎

∞

∞

∞

𝟏𝟗

∞

𝟏𝟕

𝟐𝟎

∞

𝟏𝟖

3

13
4

9

1

10

32

23

3

3

8
2

20

118

17

1

199

1

6 2
2

Algorithms and ComplexityFabian Kuhn 12

Dijkstra’s Algorithm: Example

𝟏

𝟎

𝟏𝟒

∞

𝟒

𝟏𝟗

∞

𝟕

𝟐𝟎

∞

𝟏𝟖

3

13
4

9

1

10

32

23

3

3

8
2

20

118

17

1

199

1

6 2
2

Algorithms and ComplexityFabian Kuhn 13

Dijkstra’s Algorithm: Example

𝟏

𝟎

𝟏𝟑

∞

𝟒

𝟏𝟗

𝟓

𝟕

𝟐𝟎

∞

𝟏𝟖

3

13
4

9

1

10

32

23

3

3

8
2

20

118

17

1

199

1

6 2
2

Algorithms and ComplexityFabian Kuhn 14

Dijkstra’s Algorithm: Example

𝟏

𝟎

𝟏𝟑

∞

𝟒

𝟏𝟗

𝟓

𝟕

𝟐𝟎

𝟑𝟕

𝟏𝟖

3

13
4

9

1

10

32

23

3

3

8
2

20

118

17

1

199

1

6 2
2

Algorithms and ComplexityFabian Kuhn 15

Dijkstra’s Algorithm: Example

𝟏

𝟎

𝟗

∞

𝟒

𝟏𝟗

𝟓

𝟕

𝟐𝟎

𝟑𝟕

𝟏𝟓

3

13
4

9

1

10

32

23

3

3

8
2

20

118

17

1

199

1

6 2
2

Algorithms and ComplexityFabian Kuhn 16

Dijkstra’s Algorithm: Example

𝟏

𝟎

𝟗

𝟏𝟐

𝟒

𝟏𝟏

𝟓

𝟕

𝟐𝟎

𝟏𝟗

𝟏𝟓

3

13
4

9

1

10

32

23

3

3

8
2

20

118

17

1

199

1

6 2
2

Algorithms and ComplexityFabian Kuhn 17

Dijkstra’s Algorithm: Example

𝟏

𝟎

𝟗

𝟏𝟐

𝟒

𝟏𝟏

𝟓

𝟕

𝟏𝟑

𝟏𝟗

𝟏𝟐

3

13
4

9

1

10

32

23

3

3

8
2

20

118

17

1

199

1

6 2
2

Algorithms and ComplexityFabian Kuhn

Initialization 𝑻 = ∅, ∅

• 𝛿 𝑠, 𝑠 = 0, and 𝛿 𝑠, 𝑣 = ∞ for all 𝑣 ≠ 𝑠

• 𝛼 𝑣 = NULL for all 𝑣 ∈ 𝑉

Iteration Step

• Choose a node 𝑣 with smallest

𝛿 𝑠, 𝑣 ≔ min
𝑢∈𝑆∩𝑁in 𝑣

𝑑𝐺 𝑠, 𝑢 + 𝑤 𝑢, 𝑣

• Go through all out-neighbors 𝑥 ∈ 𝑉 ∖ 𝑆 and set

𝛿 𝑠, 𝑥 ≔ min 𝛿 𝑠, 𝑥 , 𝛿 𝑠, 𝑣 + 𝑤 𝑣, 𝑥
– If 𝛿 𝑠, 𝑥 is decreased, set 𝛼 𝑥 = 𝑣

• Add node 𝑣 and edge 𝛼 𝑣 , 𝑣 to the tree 𝑇.

18

Dijkstra’s Algorithm

𝒔

𝒗

𝒙
update 𝛿 𝑠, 𝑥

Similar to the
MST algorithm
of Prim!

Algorithms and ComplexityFabian Kuhn

𝐻 = new priority queue; 𝐴 = ∅

for all 𝑢 ∈ 𝑉 ∖ {𝑠} do

𝐻.insert(𝑢, ∞); 𝛼(𝑢) = NULL

𝐻.insert(𝑠, 0)

while 𝐻 is not empty do

𝑢 = H.deleteMin()

for all unmarked neighbors 𝑣 of 𝑢 do

if 𝑤 𝑢, 𝑣 < 𝑑(𝑣) then

𝐻.decreaseKey(𝑣, 𝑤 𝑢, 𝑣)

𝛼 𝑣 = 𝑢

𝑢.marked = true

if 𝑢 ≠ 𝑠 then 𝐴 = 𝐴 ∪ 𝑢, 𝛼 𝑢

19

Reminder : Prim’s MST Algorithm

Algorithms and ComplexityFabian Kuhn

𝐻 = new priority queue; 𝐴 = ∅

for all 𝑢 ∈ 𝑉 ∖ {𝑠} do

𝐻.insert(𝑢, ∞); 𝛿 𝑠, 𝑢 = ∞; 𝛼(𝑢) = NULL

𝐻.insert(𝑠, 0)

while 𝐻 is not empty do

𝑢 = H.deleteMin()

for all unmarked out-neighbors 𝑣 of 𝑢 do

if 𝛿 𝑠, 𝑢 + 𝑤 𝑢, 𝑣 < 𝛿 𝑠, 𝑣 then

𝛿(𝑠, 𝑣) = 𝛿 𝑠, 𝑢 + 𝑤(𝑢, 𝑣)
𝐻.decreaseKey(𝑣, 𝛿 𝑠, 𝑣)
𝛼 𝑣 = 𝑢

𝑢.marked = true
if 𝑢 ≠ 𝑠 then 𝐴 = 𝐴 ∪ 𝛼 𝑢 , 𝑢

20

Dijkstra’s Algorithm : Implementation

Algorithms and ComplexityFabian Kuhn

• Algorithm implementation is almost identical to the
implementation of Prim’s MST algorithm.

• Number of heap operations:

create: 1, insert: 𝑛, deleteMin: 𝑛, decreaseKey: ≤ 𝑚
– Or alternatively without decrease-key: 𝑂 𝑚 insert and deleteMin Op.

• Running time with binary heap:

𝑶 𝒎𝐥𝐨𝐠𝒏

• Running time with Fibonacci heap:

𝑶 𝒎+ 𝒏 𝐥𝐨𝐠𝒏

21

Dijkstra’s Algorithm: Running Time

Algorithms and ComplexityFabian Kuhn

• Shortest paths can also be defined for graphs with
negative edge weights.
– Shortest path is defined if there no shorter way, even if nodes can be visited

multiple times.

Example

22

Negative Edge Weights

𝑠

3

5

2

−4

−3

−6

3

6
4

8

7

−

Algorithms and ComplexityFabian Kuhn

Lemma: In a directed, weighted graph 𝐺, there is a shortest path from
𝑠 to 𝑣 if and only if there is no there is no negative cycle that is
reachable from 𝑠 and from which one can reach 𝑣.

• Also holds for undirected graphs if edges 𝑢, 𝑣 are considered as 2
directed edges 𝑢, 𝑣 and 𝑣, 𝑢 .

Negative Edge Weights

𝑠

𝑣
− no shortest path

from 𝑢 to 𝑣

no reachable
negative cycle

We can restrict our attention to
simple path. There are only finitely
many such path.

Nodes are not
visited multiple times.

Algorithms and ComplexityFabian Kuhn

Does Dijkstra’s algorithm work with negative edge weights?

• Answer: no

𝑠

2

1

2

−2

1

1

𝑣

24

Dijkstra’s Algorithm and Negative Weights

Shortest path has length 2.

Dijkstra path has length 3.

Algorithms and ComplexityFabian Kuhn

• To simplify, we only compute the distances 𝑑𝐺 𝑠, 𝑣

Assumption:

• For all nodes 𝑣: algorithm has dist. estimate 𝜹 𝒔, 𝒗 ≥ 𝒅𝑮 𝒔, 𝒗

• Initialization: 𝛿 𝑠, 𝑠 = 0, 𝛿 𝑠, 𝑣 = ∞ for 𝑣 ≠ 𝑠

Observation:

• If 𝑢, 𝑣 ∈ 𝐸 such that 𝛿 𝑠, 𝑢 + 𝑤 𝑢, 𝑣 < 𝛿(𝑠, 𝑣), then we can
decrease (and thus improve) 𝛿 𝑠, 𝑣 because

𝒅𝑮 𝒔, 𝒗 ≤ 𝑑𝐺 𝑠, 𝑢 + 𝑤 𝑢, 𝑣

≤ 𝜹 𝒔, 𝒖 + 𝒘 𝒖, 𝒗

25

Bellman-Ford Algorithm

Algorithms and ComplexityFabian Kuhn

• Consider all edges 𝑢, 𝑣 and try to improve 𝛿 𝑠, 𝑣 ,
– until all distances are correct (∀𝑣 ∈ 𝑉: 𝛿 𝑠, 𝑣 = 𝑑𝐺 𝑠, 𝑣)

𝛿 𝑠, 𝑠 ≔ 0; ∀𝑣 ∈ 𝑉 ∖ 𝑠 ∶ 𝛿 𝑠, 𝑣 ≔ ∞

repeat

for all 𝑢, 𝑣 ∈ 𝐸 do

if 𝛿 𝑠, 𝑢 + 𝑤 𝑢, 𝑣 < 𝛿 𝑠, 𝑣 then

𝛿 𝑠, 𝑣 ≔ 𝛿 𝑠, 𝑢 + 𝑤 𝑢, 𝑣

until ∀𝑣 ∈ 𝑉: 𝛿 𝑠, 𝑣 = 𝑑𝐺 𝑠, 𝑣

• How many repetitions are necessary?
– Shortest paths consisting of one edge ⟹ 1 repetitions

– Shortest paths consisting of two edges ⟹ 2 repetitions

– …

– Shortest paths consisting of 𝑘 edges ⟹ 𝑘 repetitions

26

Bellman-Ford Algorithm

Algorithms and ComplexityFabian Kuhn

𝛿 𝑠, 𝑠 ≔ 0; ∀𝑣 ∈ 𝑉 ∖ 𝑠 ∶ 𝛿 𝑠, 𝑣 ≔ ∞
for i := 1 to n-1 do

for all 𝑢, 𝑣 ∈ 𝐸 do

if 𝛿 𝑠, 𝑢 + 𝑤 𝑢, 𝑣 < 𝛿 𝑠, 𝑣 then

𝛿 𝑠, 𝑣 ≔ 𝛿 𝑠, 𝑢 + 𝑤 𝑢, 𝑣

After 𝑖 repetitions, we have 𝜹 𝒔, 𝒗 ≤ 𝒅𝑮
𝒊
𝒔, 𝒗 , where 𝑑𝐺

𝑖
𝑠, 𝑣 is

the length of a shortest path consisting of at most 𝑖 edges.

• Follows by induction on 𝒊:

– 𝑖 = 0: 𝛿 𝑠, 𝑠 = 𝑑𝐺
0

𝑠, 𝑠 = 0, 𝑣 ≠ 𝑠 ⟹ 𝛿 𝑠, 𝑣 = 𝑑𝐺
0

𝑠, 𝑣 = ∞

– 𝑖 > 0:

𝑑𝐺
𝑖
𝑠, 𝑣 = min 𝑑𝐺

𝑖−1
𝑠, 𝑣 , min

𝑢∈𝑁𝑖𝑛 𝑣
𝑑𝐺

𝑖−1
𝑠, 𝑢 + 𝑤(𝑢, 𝑣)

(shortest path consists of ≤ 𝑖 − 1 edges or of exactly 𝑖 edges)

27

Bellman-Ford Algorithm

Algorithms and ComplexityFabian Kuhn

𝛿 𝑠, 𝑠 ≔ 0; ∀𝑣 ∈ 𝑉 ∖ 𝑠 ∶ 𝛿 𝑠, 𝑣 ≔ ∞
for i := 1 to n-1 do

for all 𝑢, 𝑣 ∈ 𝐸 do

if 𝛿 𝑠, 𝑢 + 𝑤 𝑢, 𝑣 < 𝛿 𝑠, 𝑣 then

𝛿 𝑠, 𝑣 ≔ 𝛿 𝑠, 𝑢 + 𝑤 𝑢, 𝑣

Theorem: If the graph has no negative cycles that are reachable from
𝑠, at the end all distances are computed correctly.

• At the end, we have for all 𝑣 ∈ 𝑉:

𝛿 𝑠, 𝑣 ≤ 𝑑𝐺
𝑛−1

(𝑠, 𝑣)

• Because every path consists of ≤ 𝑛 − 1 edges, we also have

𝑑𝐺
𝑛−1

𝑠, 𝑣 = 𝑑𝐺(𝑠, 𝑣)

28

Bellman-Ford Algorithm

Algorithms and ComplexityFabian Kuhn

• We will see: If there is a (from 𝑠 reachable) negative cycle, then
there is an improvement for some edge:

∃ 𝑢, 𝑣 ∈ 𝐸 ∶ 𝛿 𝑠, 𝑢 + 𝑤 𝑢, 𝑣 < 𝛿 𝑠, 𝑣

Bellman-Ford Algorithm

for i := 1 to n-1 do

for all 𝑢, 𝑣 ∈ 𝐸 do

if 𝛿 𝑠, 𝑢 + 𝑤 𝑢, 𝑣 < 𝛿 𝑠, 𝑣 then

𝛿 𝑠, 𝑣 ≔ 𝛿 𝑠, 𝑢 + 𝑤 𝑢, 𝑣

for all 𝑢, 𝑣 ∈ 𝐸 do

if 𝛿 𝑠, 𝑢 + 𝑤 𝑢, 𝑣 < 𝛿(𝑠, 𝑣) then

return false

return true

29

Detecting Negative Cycles

Algorithms and ComplexityFabian Kuhn 30

Detecting Negative Cycles

−
𝑠

𝑣1 𝑣2

𝑣3
𝑣0 = 𝑣𝑘

neg. cycle ⟹

𝑖=1

𝑘

𝑤 𝑣𝑖−1, 𝑣𝑖 < 0
!

=

< 0

Lemma: If 𝐺 contains a negative cycles that is reachable from 𝑠, then
the Bellman-Ford algorithm returns false.

Proof by contradiction:

• Assumption : ∀𝑖 ∈ 1,… , 𝑘 ∶ 𝛿 𝑠, 𝑣𝑖−1 +𝑤 𝑣𝑖−1, 𝑣𝑖 ≥ 𝛿 𝑠, 𝑣𝑖

𝑖=1

𝑘

𝛿 𝑠, 𝑣𝑖 ≤

𝑖=1

𝑘

𝛿 𝑠, 𝑣𝑖−1 +𝑤 𝑣𝑖−1, 𝑣𝑖

=

𝑖=1

𝑘

𝛿 𝑠, 𝑣𝑖−1 +

𝑖=1

𝑘

𝑤 𝑣𝑖−1, 𝑣𝑖

≤

reachable from 𝑠 ⟹ 𝛿 𝑠, 𝑣𝑖 ≠ ∞

Algorithms and ComplexityFabian Kuhn

A shortest path tree can be computed in the usual way.

Initialization:

• 𝛿 𝑠, 𝑠 = 0, für 𝑣 ≠ 𝑠 ∶ 𝛿 𝑠, 𝑣 = NULL

• 𝛼 𝑠 = NULL, for 𝑣 ≠ 𝑠 ∶ 𝛼 𝑣 = NULL

In every loop iteration:

...

if 𝛿 𝑠, 𝑢 + 𝑤 𝑢, 𝑣 < 𝛿 𝑠, 𝑣 then

𝛿 𝑠, 𝑣 ≔ 𝛿 𝑠, 𝑢 + 𝑤 𝑢, 𝑣

𝛼 𝑣 ≔ 𝑢

• At the end, 𝛼 𝑣 points to a parent in the shortest path tree
– if there are no negative cycles...

31

Bellman-Ford Algorithm : Shortest Paths

Algorithms and ComplexityFabian Kuhn

Theorem: If there is a negative cycle that is reachable from 𝑠, the
Bellman-Ford algorithm detects this. If no such cycle exists, the
Bellman-Ford algorithm computes a shortest path tree in time
𝑂 𝑉 ⋅ 𝐸 .

• Correctness: already proven

• Running time:
– 𝑛 − 1 + 1 loop iterations

– In every loop iteration, we go once through all the edges.

• Remark: One can adapt the algorithm such that it computes a
shortest path for all 𝑣, for shich such a path from 𝑠 existsts (and it
detects if no shortest path exists).
– in the same asymptotic running time

32

Bellman-Ford Algorithm : Summary

Algorithms and ComplexityFabian Kuhn

Goal: Optimal routing paths for some destination 𝑡

• For every node, we want to know to which neighbor one has to
send a message destined at node 𝑡.

• This corresponds to computing a shortest path tree if all edges are
reversed (transpose graph)

Algorithm:

• Nodes remember tha current distance 𝛿 𝑢, 𝑡 and the currently
best neighbor.

• All nodes in parallel check if there is an improvement for some
neighbor:

∃ 𝑢, 𝑣 ∈ 𝐸 ∶ 𝑤 𝑢, 𝑣 + 𝛿 𝑣, 𝑡 < 𝛿 𝑢, 𝑡

• Corresponds to a parallel variant of the Bellman-Ford algorithm

33

Routing Paths in Networks

Algorithms and ComplexityFabian Kuhn

• all pairs shortest paths problem

Compute single-source shortest paths for all nodes

• Dijkstra algorithm with all nodes:

Running time: 𝑛 ⋅ 𝑂 Running time Dijkstra ∈ 𝑂 𝑚𝑛 + 𝑛2 log 𝑛
– Problem: only works for non-negative edge weights

• Bellman-Ford algorithm with all nodes:

Running time: 𝑛 ⋅ 𝑂 Running time BF ∈ 𝑂 𝑚𝑛2 ∈ 𝑂 𝑛4

– Problem: slow...

– If the Bellman-Ford algorithm is carried out for all nodes, the running time
can be improved to 𝑂 𝑛3 ⋅ log 𝑛 .

– If all 𝑑𝐺
𝑖
𝑢, 𝑣 -distances are known, one can directly compute the

𝑑𝐺
2𝑖

𝑢, 𝑣 -distances in one iteration.

• Further details and discussion of other algorithms in various text books.

34

Shortest Paths Between All Node Pairs

