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Single Sourse Shortest Paths Problem

• Given: weighted graph 𝐺 = 𝑉, 𝐸,𝑤 , start node 𝑠 ∈ 𝑉
– We denote the weight of an edge 𝑢, 𝑣 by 𝑤 𝑢, 𝑣

– Assumption for now: ∀𝑒 ∈ 𝐸:𝑤 𝑒 ≥ 0

• Goal: Find shortest paths / distances from 𝑠 to all nodes
– Distance from 𝑠 to 𝑣: 𝑑𝐺 𝑠, 𝑣 (length of a shortest path)
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Shortest Paths
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Lemma: If 𝑣0, 𝑣1, … , 𝑣𝑘 is a shortest path from 𝑣0 to 𝑣𝑘, then
it holds for all 0 ≤ 𝑖 ≤ 𝑗 ≤ 𝑘 that the subpath 𝑣𝑖 , 𝑣𝑖+1, … , 𝑣𝑗
is also a shortest path from 𝑣𝑖 to 𝑣𝑗.

Shortest path from 𝒗𝟎 to 𝒗𝒌:

• Subpath from 𝑣𝑖 to 𝑣𝑗 is also a shortest path.

– Otherwise, one could replace the path from 𝑣𝑖 to 𝑣𝑗 by the shortest path 

from 𝑣𝑖 to 𝑣𝑗.

– If by doing this, nodes are visited multiple time, one can cut out cycles and
obtains an even shorter path.

• Lemma also holds for negative edge weights,
– as long as the graph does not contain negative cycles.
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Optimality of Subpaths
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• Spanning tree that is rooted at node 𝑠 and that contains
shortest paths from 𝑠 to all other nodes.
– Such a tree always exists (follows from the optimality of subpaths)

• For unweighted graphs: BFS spanning tree

• Goal: Find a shortest path tree
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Shortest-Path Tree
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• Algorithm by Edsger W. Dijkstra (published in 1959)

Idea:

• We start at 𝑠 and build the spanning tree in a step-by-step manner.

• Goal: In each step of the algorithm, add one node
– Initially: subtree only consists of 𝑠

(trivially satisfies invariant...)

– 1st step: Because of the optimality of subpaths, there must be a shortest
path consisting of a single edge...

– Always add the remaining node at the smallest distance from 𝑠.

5

Dijkstra’s Algorithm: Idea

Invariant:
Algorithm always has a tree rooted at 𝑠, which is a subtree 
of a shortest path tree.
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Given: A tree 𝑇 that is rooted in 𝑠, such that 𝑇 is a subtree of a
shortest paths tree for node 𝑠 in 𝐺. (nodes of 𝑇 : 𝑆)

How can we extend 𝑇 by a single node?
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Dijkstra’s Algorithm : One Step
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𝑆 :       nodes in the tree 𝑇

𝑁 𝑆 : nodes that can be added to 
the tree directly.

To add 𝑣 ∈ 𝑁 𝑆 it most hold that

𝑑𝐺 𝑠, 𝑣 = min
𝑢∈𝑆

𝑑𝐺 𝑠, 𝑢 + 𝑤 𝑢, 𝑣

We will see that this always holds for
𝑣 ∈ 𝑁 𝑆 with minimum distance
𝑑𝐺 𝑠, 𝑣 from 𝑠.
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Given: 𝑇 is subtree of a shortest path tree for 𝑠 in 𝐺.

Lemma: For a node 𝑣 ∈ 𝑁 𝑆 and an edge 𝑢, 𝑣 with 𝑢 ∈ 𝑆 such 
that  𝑑𝐺 𝑠, 𝑢 + 𝑤 𝑢, 𝑣 is minimized, it holds that

𝒅𝑮 𝒔, 𝒗 = 𝒅𝑮 𝒔, 𝒖 + 𝒘 𝒖, 𝒗

Consider the 𝑠-𝑣 path that we obtain in this way:

Assume that there is a shorter path:

– Because there are no negative edge weights, we therefore have

𝑑𝐺 𝑠, 𝑥 + 𝑤 𝑥, 𝑦 ≤ 𝑑𝐺(𝑠, 𝑣) < 𝑑𝐺 𝑠, 𝑢 + 𝑤(𝑢, 𝑣)
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Dijkstra’s Algorithm : One Step

𝒔 𝒗𝒖𝑺 𝑵(𝑺)

𝒔 𝒙 𝒚𝑺
𝑵(𝑺)

𝒗
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• At the beginning, we have 𝑇 = 𝑠 , ∅

• For each node 𝑣 ∉ 𝑆, one at all times computes

𝛿 𝑠, 𝑣 ≔ min
𝑢∈𝑆∩𝑁in 𝑣

𝑑𝐺 𝑠, 𝑢 + 𝑤 𝑢, 𝑣

– as well as the incoming neighbor 𝑢 =: 𝛼 𝑣 that minimized the expression...

• 𝛿 𝑠, 𝑣 corresponds to an 𝑠-𝑣 path  ⟹𝛿 𝑠, 𝑣 ≥ 𝑑𝐺 𝑠, 𝑣

• Lemma on last slide:

For minimum 𝜹 𝒔, 𝒗 , we have: 𝜹 𝒔, 𝒗 = 𝒅𝑮 𝒔, 𝒗

8

Dijkstra’s Algorithm

Invariant:
Algorithm always has a tree 𝑇 = (𝑆, 𝐴) rooted at 𝑠, which is 
a subtree of a shortest path tree of 𝐺.
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Initialization 𝑻 = ∅, ∅

• 𝛿 𝑠, 𝑠 = 0,    and 𝛿 𝑠, 𝑣 = ∞ for all 𝑣 ≠ 𝑠

• 𝛼 𝑣 = NULL for all 𝑣 ∈ 𝑉

Iteration Step

• Choose a node 𝑣 with smallest

𝛿 𝑠, 𝑣 ≔ min
𝑢∈𝑆∩𝑁in 𝑣

𝑑𝐺 𝑠, 𝑢 + 𝑤 𝑢, 𝑣

• Go through all out-neighbors 𝑥 ∈ 𝑉 ∖ 𝑆 and set

𝛿 𝑠, 𝑥 ≔ min 𝛿 𝑠, 𝑥 , 𝛿 𝑠, 𝑣 + 𝑤 𝑣, 𝑥
– If 𝛿 𝑠, 𝑥 is decreased, set 𝛼 𝑥 = 𝑣

• Add node 𝑣 and edge 𝛼 𝑣 , 𝑣 to the tree 𝑇.

9

Dijkstra’s Algorithm

𝒔

𝒗

𝒙
update 𝛿 𝑠, 𝑥
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Dijkstra’s Algorithm: Example
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Dijkstra’s Algorithm: Example
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Dijkstra’s Algorithm: Example
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Dijkstra’s Algorithm: Example
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Dijkstra’s Algorithm: Example

𝟏

𝟎

𝟏𝟑

∞

𝟒

𝟏𝟗

𝟓

𝟕

𝟐𝟎

𝟑𝟕

𝟏𝟖

3

13
4

9

1

10

32

23

3

3

8
2

20

118

17

1

199

1

6 2
2



Algorithms and ComplexityFabian Kuhn 15

Dijkstra’s Algorithm: Example
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Dijkstra’s Algorithm: Example
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Dijkstra’s Algorithm: Example
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Initialization 𝑻 = ∅, ∅

• 𝛿 𝑠, 𝑠 = 0,    and 𝛿 𝑠, 𝑣 = ∞ for all 𝑣 ≠ 𝑠

• 𝛼 𝑣 = NULL for all 𝑣 ∈ 𝑉

Iteration Step

• Choose a node 𝑣 with smallest

𝛿 𝑠, 𝑣 ≔ min
𝑢∈𝑆∩𝑁in 𝑣

𝑑𝐺 𝑠, 𝑢 + 𝑤 𝑢, 𝑣

• Go through all out-neighbors 𝑥 ∈ 𝑉 ∖ 𝑆 and set

𝛿 𝑠, 𝑥 ≔ min 𝛿 𝑠, 𝑥 , 𝛿 𝑠, 𝑣 + 𝑤 𝑣, 𝑥
– If 𝛿 𝑠, 𝑥 is decreased, set 𝛼 𝑥 = 𝑣

• Add node 𝑣 and edge 𝛼 𝑣 , 𝑣 to the tree 𝑇.

18

Dijkstra’s Algorithm

𝒔
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𝒙
update 𝛿 𝑠, 𝑥

Similar to the
MST algorithm
of Prim!
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𝐻 = new priority queue; 𝐴 = ∅

for all 𝑢 ∈ 𝑉 ∖ {𝑠} do

𝐻.insert(𝑢, ∞); 𝛼(𝑢) = NULL

𝐻.insert(𝑠, 0)

while 𝐻 is not empty do

𝑢 = H.deleteMin()

for all unmarked neighbors 𝑣 of 𝑢 do

if 𝑤 𝑢, 𝑣 < 𝑑(𝑣) then

𝐻.decreaseKey(𝑣, 𝑤 𝑢, 𝑣 )

𝛼 𝑣 = 𝑢

𝑢.marked = true

if 𝑢 ≠ 𝑠 then 𝐴 = 𝐴 ∪ 𝑢, 𝛼 𝑢

19

Reminder : Prim’s MST Algorithm
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𝐻 = new priority queue; 𝐴 = ∅

for all 𝑢 ∈ 𝑉 ∖ {𝑠} do

𝐻.insert(𝑢, ∞); 𝛿 𝑠, 𝑢 = ∞; 𝛼(𝑢) = NULL

𝐻.insert(𝑠, 0)

while 𝐻 is not empty do

𝑢 = H.deleteMin()

for all unmarked out-neighbors 𝑣 of 𝑢 do

if 𝛿 𝑠, 𝑢 + 𝑤 𝑢, 𝑣 < 𝛿 𝑠, 𝑣 then

𝛿(𝑠, 𝑣) = 𝛿 𝑠, 𝑢 + 𝑤(𝑢, 𝑣)
𝐻.decreaseKey(𝑣, 𝛿 𝑠, 𝑣 )
𝛼 𝑣 = 𝑢

𝑢.marked = true
if 𝑢 ≠ 𝑠 then 𝐴 = 𝐴 ∪ 𝛼 𝑢 , 𝑢

20

Dijkstra’s Algorithm : Implementation
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• Algorithm implementation is almost identical to the 
implementation of Prim’s MST algorithm.

• Number of heap operations:

create: 1,   insert: 𝑛,   deleteMin: 𝑛,   decreaseKey: ≤ 𝑚
– Or alternatively without decrease-key: 𝑂 𝑚 insert and deleteMin Op.

• Running time with binary heap:

𝑶 𝒎𝐥𝐨𝐠𝒏

• Running time with Fibonacci heap:

𝑶 𝒎+ 𝒏 𝐥𝐨𝐠𝒏

21

Dijkstra’s Algorithm: Running Time
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• Shortest paths can also be defined for graphs with
negative edge weights.
– Shortest path is defined if there no shorter way, even if nodes can be visited

multiple times.

Example

22

Negative Edge Weights

𝑠

3

5

2

−4

−3

−6

3

6
4

8

7

−



Algorithms and ComplexityFabian Kuhn

Lemma: In a directed, weighted graph 𝐺, there is a shortest path from
𝑠 to 𝑣 if and only if there is no there is no negative cycle that is 
reachable from 𝑠 and from which one can reach 𝑣.

• Also holds for undirected graphs if edges 𝑢, 𝑣 are considered as 2 
directed edges 𝑢, 𝑣 and 𝑣, 𝑢 .

Negative Edge Weights

𝑠

𝑣
− no shortest path

from 𝑢 to 𝑣

no reachable
negative cycle

We can restrict our attention to
simple path. There are only finitely
many such path.

Nodes are not
visited multiple times.
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Does Dijkstra’s algorithm work with negative edge weights?

• Answer: no

𝑠
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1

2

−2

1

1

𝑣
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Dijkstra’s Algorithm and Negative Weights

Shortest path has length 2.

Dijkstra path has length 3.
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• To simplify, we only compute the distances 𝑑𝐺 𝑠, 𝑣

Assumption:

• For all nodes 𝑣: algorithm has dist. estimate 𝜹 𝒔, 𝒗 ≥ 𝒅𝑮 𝒔, 𝒗

• Initialization: 𝛿 𝑠, 𝑠 = 0,   𝛿 𝑠, 𝑣 = ∞ for 𝑣 ≠ 𝑠

Observation:

• If 𝑢, 𝑣 ∈ 𝐸 such that 𝛿 𝑠, 𝑢 + 𝑤 𝑢, 𝑣 < 𝛿(𝑠, 𝑣), then we can 
decrease (and thus improve) 𝛿 𝑠, 𝑣 because

𝒅𝑮 𝒔, 𝒗 ≤ 𝑑𝐺 𝑠, 𝑢 + 𝑤 𝑢, 𝑣

≤ 𝜹 𝒔, 𝒖 + 𝒘 𝒖, 𝒗

25

Bellman-Ford Algorithm
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• Consider all edges 𝑢, 𝑣 and try to improve 𝛿 𝑠, 𝑣 ,
– until all distances are correct (∀𝑣 ∈ 𝑉: 𝛿 𝑠, 𝑣 = 𝑑𝐺 𝑠, 𝑣 )

𝛿 𝑠, 𝑠 ≔ 0; ∀𝑣 ∈ 𝑉 ∖ 𝑠 ∶ 𝛿 𝑠, 𝑣 ≔ ∞

repeat

for all 𝑢, 𝑣 ∈ 𝐸 do

if 𝛿 𝑠, 𝑢 + 𝑤 𝑢, 𝑣 < 𝛿 𝑠, 𝑣 then

𝛿 𝑠, 𝑣 ≔ 𝛿 𝑠, 𝑢 + 𝑤 𝑢, 𝑣

until ∀𝑣 ∈ 𝑉: 𝛿 𝑠, 𝑣 = 𝑑𝐺 𝑠, 𝑣

• How many repetitions are necessary?
– Shortest paths consisting of one edge ⟹ 1 repetitions

– Shortest paths consisting of two edges ⟹ 2 repetitions

– …

– Shortest paths consisting of 𝑘 edges ⟹ 𝑘 repetitions

26

Bellman-Ford Algorithm
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𝛿 𝑠, 𝑠 ≔ 0; ∀𝑣 ∈ 𝑉 ∖ 𝑠 ∶ 𝛿 𝑠, 𝑣 ≔ ∞
for i := 1 to n-1 do

for all 𝑢, 𝑣 ∈ 𝐸 do

if 𝛿 𝑠, 𝑢 + 𝑤 𝑢, 𝑣 < 𝛿 𝑠, 𝑣 then

𝛿 𝑠, 𝑣 ≔ 𝛿 𝑠, 𝑢 + 𝑤 𝑢, 𝑣

After 𝑖 repetitions, we have 𝜹 𝒔, 𝒗 ≤ 𝒅𝑮
𝒊
𝒔, 𝒗 , where 𝑑𝐺

𝑖
𝑠, 𝑣 is 

the length of a shortest path consisting of at most 𝑖 edges.

• Follows by induction on 𝒊:

– 𝑖 = 0: 𝛿 𝑠, 𝑠 = 𝑑𝐺
0

𝑠, 𝑠 = 0, 𝑣 ≠ 𝑠 ⟹ 𝛿 𝑠, 𝑣 = 𝑑𝐺
0

𝑠, 𝑣 = ∞

– 𝑖 > 0:

𝑑𝐺
𝑖
𝑠, 𝑣 = min 𝑑𝐺

𝑖−1
𝑠, 𝑣 , min

𝑢∈𝑁𝑖𝑛 𝑣
𝑑𝐺

𝑖−1
𝑠, 𝑢 + 𝑤(𝑢, 𝑣)

(shortest path consists of ≤ 𝑖 − 1 edges or of exactly 𝑖 edges)

27

Bellman-Ford Algorithm
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𝛿 𝑠, 𝑠 ≔ 0; ∀𝑣 ∈ 𝑉 ∖ 𝑠 ∶ 𝛿 𝑠, 𝑣 ≔ ∞
for i := 1 to n-1 do

for all 𝑢, 𝑣 ∈ 𝐸 do

if 𝛿 𝑠, 𝑢 + 𝑤 𝑢, 𝑣 < 𝛿 𝑠, 𝑣 then

𝛿 𝑠, 𝑣 ≔ 𝛿 𝑠, 𝑢 + 𝑤 𝑢, 𝑣

Theorem: If the graph has no negative cycles that are reachable from 
𝑠, at the end all distances are computed correctly. 

• At the end, we have for all 𝑣 ∈ 𝑉:

𝛿 𝑠, 𝑣 ≤ 𝑑𝐺
𝑛−1

(𝑠, 𝑣)

• Because every path consists of ≤ 𝑛 − 1 edges, we also have

𝑑𝐺
𝑛−1

𝑠, 𝑣 = 𝑑𝐺(𝑠, 𝑣)

28

Bellman-Ford Algorithm
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• We will see: If there is a (from 𝑠 reachable) negative cycle, then
there is an improvement for some edge:

∃ 𝑢, 𝑣 ∈ 𝐸 ∶ 𝛿 𝑠, 𝑢 + 𝑤 𝑢, 𝑣 < 𝛿 𝑠, 𝑣

Bellman-Ford Algorithm

for i := 1 to n-1 do

for all 𝑢, 𝑣 ∈ 𝐸 do

if 𝛿 𝑠, 𝑢 + 𝑤 𝑢, 𝑣 < 𝛿 𝑠, 𝑣 then

𝛿 𝑠, 𝑣 ≔ 𝛿 𝑠, 𝑢 + 𝑤 𝑢, 𝑣

for all 𝑢, 𝑣 ∈ 𝐸 do

if 𝛿 𝑠, 𝑢 + 𝑤 𝑢, 𝑣 < 𝛿(𝑠, 𝑣) then

return false

return true

29

Detecting Negative Cycles
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Detecting Negative Cycles

−
𝑠

𝑣1 𝑣2

𝑣3
𝑣0 = 𝑣𝑘

neg. cycle ⟹

𝑖=1

𝑘

𝑤 𝑣𝑖−1, 𝑣𝑖 < 0
!

=

< 0

Lemma: If 𝐺 contains a negative cycles that is reachable from 𝑠, then
the Bellman-Ford algorithm returns false.

Proof by contradiction:

• Assumption : ∀𝑖 ∈ 1,… , 𝑘 ∶ 𝛿 𝑠, 𝑣𝑖−1 +𝑤 𝑣𝑖−1, 𝑣𝑖 ≥ 𝛿 𝑠, 𝑣𝑖



𝑖=1

𝑘

𝛿 𝑠, 𝑣𝑖 ≤ 

𝑖=1

𝑘

𝛿 𝑠, 𝑣𝑖−1 +𝑤 𝑣𝑖−1, 𝑣𝑖

=

𝑖=1

𝑘

𝛿 𝑠, 𝑣𝑖−1 +

𝑖=1

𝑘

𝑤 𝑣𝑖−1, 𝑣𝑖

≤

reachable from 𝑠 ⟹ 𝛿 𝑠, 𝑣𝑖 ≠ ∞
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A shortest path tree can be computed in the usual way.

Initialization:

• 𝛿 𝑠, 𝑠 = 0,   für 𝑣 ≠ 𝑠 ∶ 𝛿 𝑠, 𝑣 = NULL

• 𝛼 𝑠 = NULL, for 𝑣 ≠ 𝑠 ∶ 𝛼 𝑣 = NULL

In every loop iteration:

...

if 𝛿 𝑠, 𝑢 + 𝑤 𝑢, 𝑣 < 𝛿 𝑠, 𝑣 then

𝛿 𝑠, 𝑣 ≔ 𝛿 𝑠, 𝑢 + 𝑤 𝑢, 𝑣

𝛼 𝑣 ≔ 𝑢

• At the end, 𝛼 𝑣 points to a parent in the shortest path tree
– if there are no negative cycles...
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Theorem: If there is a negative cycle that is reachable from 𝑠, the 
Bellman-Ford algorithm detects this. If no such cycle exists, the 
Bellman-Ford algorithm computes a shortest path tree in time 
𝑂 𝑉 ⋅ 𝐸 .

• Correctness: already proven

• Running time:
– 𝑛 − 1 + 1 loop iterations

– In every loop iteration, we go once through all the edges.

• Remark: One can adapt the algorithm such that it computes a 
shortest path for all 𝑣, for shich such a path from 𝑠 existsts (and it 
detects if no shortest path exists).
– in the same asymptotic running time
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Goal: Optimal routing paths for some destination 𝑡

• For every node, we want to know to which neighbor one has to 
send a message destined at node 𝑡.

• This corresponds to computing a shortest path tree if all edges are 
reversed (transpose graph)

Algorithm:

• Nodes remember tha current distance 𝛿 𝑢, 𝑡 and the currently 
best neighbor.

• All nodes in parallel check if there is an improvement for some 
neighbor:

∃ 𝑢, 𝑣 ∈ 𝐸 ∶ 𝑤 𝑢, 𝑣 + 𝛿 𝑣, 𝑡 < 𝛿 𝑢, 𝑡

• Corresponds to a parallel variant of the Bellman-Ford algorithm
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• all pairs shortest paths problem

Compute single-source shortest paths for all nodes

• Dijkstra algorithm with all nodes:

Running time: 𝑛 ⋅ 𝑂 Running time Dijkstra ∈ 𝑂 𝑚𝑛 + 𝑛2 log 𝑛
– Problem: only works for non-negative edge weights

• Bellman-Ford algorithm with all nodes:

Running time: 𝑛 ⋅ 𝑂 Running time BF ∈ 𝑂 𝑚𝑛2 ∈ 𝑂 𝑛4

– Problem: slow...

– If the Bellman-Ford algorithm is carried out for all nodes, the running time 
can be improved to 𝑂 𝑛3 ⋅ log 𝑛 .

– If all 𝑑𝐺
𝑖
𝑢, 𝑣 -distances are known, one can directly compute the 

𝑑𝐺
2𝑖

𝑢, 𝑣 -distances in one iteration.

• Further details and discussion of other algorithms in various text books.
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Shortest Paths Between All Node Pairs


