Algorithms and Data Structures

Lecture 12

String Matching (Text Search)

Fabian Kuhn Algorithms and Complexity

Given:

- two strings
- text T (typically long)
- pattern *P* (typically short)

Goal:

• Find all occurrences of P in T

Assumptions:

• Length of text $T : \mathbf{n}$, Length of pattern $P : \mathbf{m}$ $(\mathbf{m} \ll \mathbf{n})$

Example:

• Search pattern P = "ABCA" in the following string

T = ABI CLABCAD LHABCABCA KAHBCA ALBCABABCABL LKAGA

Motivation

- This is obviously important...
- Required in every text editor
 - Every editor has a find function
- Supported by higher programming languages:
 - Java: String.indexOf(String pattern, int fromThisPosition)
 - C++: std::string.find(std::string str, size_t fromThisPosition)
 - Python: str.find(pattern, from), where str is a string

Naïve Algorithm

- Go through the text from left to right
- The pattern can occur at each of the positions s = 0, ..., n m

- Test at each of these positions if there is a match between the pattern an the corresponding part of the text,
 - by going trough the pattern character by character and comparing with the corresponding character in the text.

TestPosition(s): // tests if T[s, ..., s + m - 1] == P t = 0while t < m and T[s + t] == P[t] do t = t + 1return (t == m)

Laufzeit:

#Iter. :=
$$\begin{cases} m, & \text{if } P \text{ is found} \\ 1 + \min_{0 < i < m} T[s+i] \neq P[i], & \text{else} \end{cases}$$

- Worst Case: O(m)
 - In the worst case, one has to check all m positions of P
 - This is in particular the case if P is found
- Best Case: 0(1)
 - In the best case, we already see at the first character that there is no match (is $T[s] \neq P[0]$)

TestPosition(s): // tests if T[s, ..., s + m - 1] == P

while t < m and T[s + t] == P[t] do

t = t + 1

return (t == m)

String-Matching:

for s from 0 to n - m do
 if TestPosition(s) then
 report found match at position s

Running Time:

- Worst Case: $O(n \cdot m)$
- Best Case : O(n)

5 5 6

new window

Basic Idea

- For simplicity , we assume that the text only consists of the digits 0, ..., 9
 - Then we can understand the pattern and the text window as numbers
- We again move a window of length *m* over the text and check at each position if the pattern matches.

• If the window is moved by one to the right, the new number can be computed in a simple way from the old number

$$64556 = (96455 - 9 \cdot 10^{m-1}) \cdot 10 + 6$$

9

old window

6 4

Observations:

JNI REIBURG

- In each step, we just have to compare two numbers.
- If the numbers are equal, the pattern appears at that position.
- When moving the window by one position, the new number can be computed from the old number in time O(1).
- If we can compare two numbers in time O(1), then the algorithm has a running time of O(n).
- **Problem:** The numbers can be very large ($\Theta(m)$ bits)
 - Comparing two $\Theta(m)$ -bit numbers requires time $\Theta(m)$
 - Not better than the naïve algorithm
- Idea: Apply hashing and compare hash values
 - If the window is moved by one to the right, we need to be able to compute the new hash value from the old hash value in time O(1).

Solution of Rabin and Karp:

- We calculate everything with numbers modulo *M*
 - M should be as large as possible, however still small enough such that numbers in the range 0, ..., M 1 fit in one memory cell (e.g., 64 Bit).
- Pattern and text window are then both numbers in

 $\{0,\ldots,M-1\}$

- When moving the search window, the new number can again be computed in time O(1).
 - We will look at this afterwards...
- If the pattern is found, the two numbers are equal. If not, the can nevertheless be equal
 - If the numbers are equal, then we again check if we have found the pattern in a character-by-character way as in the naïve algorithm.

Rabin-Karp Algorithm: Example

Text: 572830354826 Pattern: 283 Modulus *M* = 5

Pattern: 283 mod 5 = 3

NH

 $x \mod M = y \iff \exists q \in \mathbb{Z}: y = x + q \cdot M \land y \in \{0, \dots, M - 1\}$

• $x \mod M$: add/subtract M from x until the result is in the range $\{0, \dots, M - 1\}$

Some Rules:

$$(a \cdot b) \mod M = ((a \mod M) \cdot (b \mod M)) \mod M$$
$$(a + b) \mod M = ((a \mod M) + (b \mod M)) \mod M$$

 $\begin{array}{l} a = k \cdot M + c \implies a \bmod M = c \\ b = \ell \cdot M + d \implies b \bmod M = d \end{array} \quad (c, d \in \{0, \dots, M - 1\}) \end{array}$

$$a \cdot b \mod M = (k\ell \cdot M^2 + (kd + \ell c) \cdot M + cd) \mod M$$
$$= cd \mod M = (a \mod M) \cdot (b \mod M) \mod M$$

 $x \mod M = y \iff \exists q \in \mathbb{Z}: y = x + q \cdot M \land y \in \{0, \dots, M - 1\}$

• $x \mod M$: add/subtract M from x until the result is in the range $\{0, ..., M - 1\}$

Some Rules:

$$(a \cdot b) \mod M = ((a \mod M) \cdot (b \mod M)) \mod M$$
$$(a + b) \mod M = ((a \mod M) + (b \mod M)) \mod M$$

Moving the Window:

• Moving window from position s to position s + 1

$$t \coloneqq (T[s] \dots T[s + M - 1]) \mod M,$$

$$t' \coloneqq (T[s + 1] \dots T[s + M]) \mod M$$

$$t' = \left(\left(t - T[s] \cdot \left(b^{M-1} \mod M \right) \right) \cdot b + T[s + M] \right) \mod M$$

 $x \mod M = y \iff \exists q \in \mathbb{Z}: y = x + q \cdot M \land y \in \{0, \dots, M - 1\}$

Negative Numbers

We need that x mod M is always in {0, ..., M - 1}
 Examples:
 24 mod 10

 $24 \mod 10 = 4, \qquad 4 \mod 10 = 4, \qquad -4 \mod 10 = 6$

• But: In Java / C++ / Python, we have -x % m = -(x % m)Examples:

24 % 10 = 4, 4 % 10 = 4, -4 % 10 = -4

• Workaround: If the result of x % M is negative, just add M to end up in the correct domain.

ZH

Rabin-Karp Algorithm: Pseudocode

Text $T[0 \dots n-1]$, Pattern $P[0 \dots m-1]$, Base b, Modulus M

$$h = b^{m-1} \mod M$$

$$p = 0; \quad t = 0;$$
for $i = 0$ to $m - 1$ do
$$p = (p \cdot b + P[i]) \mod M$$

$$t = (t \cdot b + T[i]) \mod M$$
hash value of $P: p \coloneqq P \mod M$
hash value of $T[0 \dots m - 1]:$

$$t \coloneqq T[0 \dots m - 1] \mod M$$
for $s = 0$ to $n - m$ do
if $p == t$ then
TestPosition(s)
$$t = ((t - T[s] \cdot h) \cdot b + T[s + m]) \mod M$$
update t in time $O(1)$

N H

Rabin-Karp Algorithm: Running Time

Pre-Computation: O(m)

In the worst case: $O(n \cdot m)$

- The wirst case happens if the numbers match in each step. Then one has to check each of the *m* characters in each step to see if the pattern has really been found.
 - Should not happen too often is *M* is chosen in the right way...
 - Except if the pattern really occurs very often ($\Theta(n)$ times)...

In the best case: $O(n + k \cdot m)$ (k: #occurrences of P in T)

• In the best case, the numbers are only equal if the pattern is really found. The time cost is then $O(n + k \cdot m)$, if the pattern appears k times in the text.

FREIBURG

Number Representation and Choice of M

- We would like that for x ≠ y, it is "unlikely" that h(x) = h(y) (for h(x) ≔ x mod M)
- We assume that the characters in pattern and text are represented as digits of a number in base-*b* representation

- In our examples, we had b = 10

If b and M have a common divisor, h(x) = h(y) for x ≠ y is not so unlikely ...

Extreme case b = 10, M = 20 (b is a divisor of M) $P = \alpha_{m-1}, ..., \alpha_1, \alpha_0 = \sum_{i=0}^{m-1} \alpha_i \cdot 10^i$ $10^i \mod 20 = \begin{cases} 1, & \text{if } i = 0\\ 10, & \text{if } i = 1\\ 0, & \text{if } i > 1 \end{cases}$ $P \mod 20 = (\alpha_1 \cdot 10 + \alpha_0) \mod 20$

FREIBURG

Number Representation and Choice of M

- We would like that for x ≠ y, it is "unlikely" that h(x) = h(y) (for h(x) ≔ x mod M)
- We assume that the characters in pattern and text are represented as digits of a number in base-*b* representation

- In our examples, we had b = 10

If b and M have a common divisor, h(x) = h(y) for x ≠ y is not so unlikely ...

We therefore choose

- The base *b* as a sufficiently large prime number
 - For ASCII characters, we need b > 256
- *M* can then be chosen (almost) arbitrarily, ideally as a power of 2
 - Intermediate results are $< M \cdot b$, this should ideally fit within, e.g., 64 bits

Algorithm of Knuth, Morris, Pratt

- Can we always solve the problem in time O(n)?
 - in the worst case ...

Let's again look at an example:

NH

Idea:

- If, when testing the pattern P at some position t we find that P[t] does not match with the corresponding character in the text, then we know that the positions $P[0 \dots t 1]$ were correct.
- This can be used in the remainder of the search

Knuth-Morris-Pratt Algorithm

Precomputation: Array S of length m + 1

- *S*[*i*]: position in *P*, at which the search continues if when testing for the pattern, we have a mismatch at position *i* of the pattern
- S[0] = -1, S[1] = 0
- *S*[*m*]: position in *P*, at which one continues after *P* has been found successfully.

Example:

$$P = [A, B, D, A, B, L, A, B, D, A, B, D]$$

$$S = [-1, 0, 0, 0, 1, 2, 0, 1, 2, 3, 4, 5, 3]$$

Knuth-Morris-Pratt Algorithm

N H t = 0; p = 0 // t: position in text, p: position in pattern while t < n do if T[t] == P[p] then // characters match if p == m - 1 then // pattern found pattern found at position t - m + 1p = S[m]; t = t + 1else p = p + 1; t = t + 1else // characters don't match **if** p == 0 **then** // mismatch at first character t = t + 1*S*[*p*]* p else Ρ p = S[p]Ρ

Knuth-Morris-Pratt Algorithm: Example

Pattern: ABCABC S = [-1,0,0,0,1,2,3]

A D A B C D A B C A G A B V A B C A B C A B C Text: A B C A B C A B C A B C ABCABC A B C A B C A B C A B C A B C A B C A B C A B C ABCABC A B C A B C A B C A B C A B C A B C ABCABC

UNI FREIBURG t = 0; p = 0

Knuth-Morris-Pratt Alg.: Running Time

Running time without initialization of array S: O(n)

while
$$t < n$$
 do
if $T[t] == P[p]$ then
if $p == m - 1$ then
pattern found
 $p = S[m]$; $t = t + 1$
else
 $p = p + 1$; $t = t + 1$
else
if $p == 0$ then
 $t = t + 1$
else

p = S[p]

In each step,		
	the position in the text is incremented	
or		
	the window	
	is moved	

NH

Precomputation of Array *S*:

- P = [A, B, D, A, B, L, A, B, D, A, B, D]
 S = [-1, 0, 0, 0, 1, 2, 0, 1, 2, 3, 4, 5, 3]
- At position i in S (for $i \in \{2, ..., m\}$), we have

 $S[i] \coloneqq \min_{k < i} \{P[i - k \dots i - 1] = P[0 \dots k - 1]\}$

 S[i]: Length of the longest proper part of P[0 ... i − 1], such that the part ends at position i − 1 and the same part is also prefix of P.

Computation of S[i]:

• We will look at this next...

22

Computation of S[i]

• If P[i-1] = P[S[i-1]], then S[i] = S[i-1] + 1

NE

- Longest possible prefix and suffix has length S[S[i-1]] + 1
 - Test if P[i 1] = S[S[i 1]]?
 - If yes, then we have S[i] = S[S[i-1]] + 1
 - If no, then the next position we need to test is S[S[i-1]]
 - etc.

Computation of *S*[*i*]: Pseudocode

h = S[i - 1]**Observation:** while $h \ge 0$ do $S[i] \leq S[i-1] + 1$ if P[i - 1] == P[h] then S[i] = h + 1; h = -2else h = S[h]if h == -1 then S[i] = 0If S[i] = S[i - 1] + 1: 1 loop iteration If $S[i] \le S[i-1]$:

- Value of *h* decreases in each loop iteration
- At the end, we have S[i] = h + 1
- Number of loop iterations $\leq \Delta h + 1 = S[i-1] S[i] + 2$

Computation of *S*[*i*]: Running Time

If S[i] = S[i - 1] + 1:

• #loop iterations = 1 = S[i - 1] - S[i] + 2

Falls $S[i] \leq S[i-1]$:

• #loop iterations $\leq \Delta h + 1 = S[i-1] - S[i] + 2$

Overall Running Time T(m):

$$T(m) \le \sum_{i=2}^{m} (S[i-1] - S[i] + 2)$$

= 2(m-1) + (S[1] - S[2] + S[2] - S[3] + S[3] - ...
+ ... - S[m-1] + S[m-1] - S[m])
= 2(m-1) + S[1] - S[m] = O(m)

Knuth-Morris-Pratt Algorithm: Summary

Knuth-Morris-Pratt Algorithm:

- First computes the array S of length m + 1 in time O(m)
 - only depends on the pattern P
 - describes at each position of the pattern, where (in the pattern) we have to continue after a mismatch
- With the help of S, all occurrences of the pattern P in the text T can be found in time O(n).
 - In each step, one can either increment the current search position in the text T or one can move the position of the search window in T by at least 1 position to the right.

Overall Running Time: O(m + n) = O(n)