Algorithms and Data Structures

Lecture 12
String Matching (Text Search)

Fabian Kuhn
Algorithms and Complexity

Text Search / String Matching

Given:

- two strings
- text T (typically long)
- pattern P (typically short)

Goal:

- Find all occurrences of P in T

Assumptions:

- Length of text $T: \boldsymbol{n}, \quad$ Length of pattern $P: \boldsymbol{m}$

Example:

- Search pattern $P=$ "ABCA" in the following string $T=A B I \quad$ CLABCAD LHABCABCA KAHBCA ALBCABABCABL LKAGA

Motivation

- This is obviously important...
- Required in every text editor
- Every editor has a find function
- Supported by higher programming languages:
- Java: String.indexOf(String pattern, int fromThisPosition)
- C++: std::string.find(std::string str, size_t fromThisPosition)
- Python: str.find(pattern, from), where str is a string

Naïve Algorithm

- Go through the text from left to right
- The pattern can occur at each of the positions $s=0, \ldots, n-m$

$P \square \square \square$
- Test at each of these positions if there is a match between the pattern an the corresponding part of the text,
- by going trough the pattern character by character and comparing with the corresponding character in the text.

Naïve Algorithm

TestPosition(s):
$/ /$ tests if $T[s, \ldots, s+m-1]==P$
$t=0$
while $t<m$ and $T[s+t]==P[t]$ do

$$
t=t+1
$$

return ($t==m$)

Laufzeit:

$$
\text { \#Iter: }:= \begin{cases}m, & \text { if } P \text { is found } \\ 1+\min _{0<i<m} T[s+i] \neq P[i], & \text { else }\end{cases}
$$

- Worst Case: $O(\mathrm{~m})$
- In the worst case, one has to check all m positions of P
- This is in particular the case if P is found
- Best Case: $O(1)$
- In the best case, we already see at the first character that there is no match (is $T[s] \neq P[0]$)

Naïve Algorithm

TestPosition(s):
$/ /$ tests if $T[s, \ldots, s+m-1]==P$
$t=0$
while $t<m$ and $T[s+t]==P[t]$ do

$$
t=t+1
$$

return ($t==m$)
String-Matching:
for s from 0 to $n-m$ do if TestPosition(s) then report found match at position s

Running Time:

- Worst Case: $O(n \cdot m)$
- Best Case : $O(n)$

Rabin-Karp Algorithm

Basic Idea

- For simplicity, we assume that the text only consists of the digits $0, \ldots, 9$
- Then we can understand the pattern and the text window as numbers
- We again move a window of length m over the text and check at each position if the pattern matches.

6	5	0	0	1

- If the window is moved by one to the right, the new number can be computed in a simple way from the old number

	+				
9	6	4	5	5	6

old window

Rabin-Karp Algorithm

Observations:

- In each step, we just have to compare two numbers.
- If the numbers are equal, the pattern appears at that position.
- When moving the window by one position, the new number can be computed from the old number in time O (1).
- If we can compare two numbers in time $O(1)$, then the algorithm has a running time of $O(n)$.
- Problem: The numbers can be very large ($\Theta(m)$ bits)
- Comparing two $\Theta(m)$-bit numbers requires time $\Theta(m)$
- Not better than the naïve algorithm
- Idea: Apply hashing and compare hash values
- If the window is moved by one to the right, we need to be able to compute the new hash value from the old hash value in time $O(1)$.

Rabin-Karp Algorithmus

Solution of Rabin and Karp:

- We calculate everything with numbers modulo M
- M should be as large as possible, however still small enough such that numbers in the range $0, \ldots, M-1$ fit in one memory cell (e.g., 64 Bit).
- Pattern and text window are then both numbers in

$$
\{0, \ldots, M-1\}
$$

- When moving the search window, the new number can again be computed in time O (1).
- We will look at this afterwards...
- If the pattern is found, the two numbers are equal. If not, the can nevertheless be equal
- If the numbers are equal, then we again check if we have found the pattern in a character-by-character way as in the naïve algorithm.

Rabin-Karp Algorithm: Example

Text: 572830354826
Pattern: $\mathbf{2 8 3} \quad$ Modulus $M=5$

Pattern: $283 \bmod 5=3$
$\left.\begin{array}{l}\mathbf{1}^{\text {st }} \text { window: } 572 \bmod 5=2 \\ \mathbf{2}^{\text {nd }} \text { window: } 728 \bmod 5=3\end{array}\right)$ in $O(1)$ Zeit
\longrightarrow test: $728 \neq 283 \Rightarrow$ no match
$3^{\text {rd }}$ window: $283 \bmod 5=3$
test: $283=283 \Rightarrow$ pattern found

Computations Modulo M

$$
x \bmod M=y \Leftrightarrow \exists q \in \mathbb{Z}: y=x+q \cdot M \wedge y \in\{0, \ldots, M-1\}
$$

- $\quad x \bmod M:$ add/subtract M from x until the result is in the range $\{0, \ldots, M-1\}$

Some Rules:

$(a \cdot b) \bmod M=((a \bmod M) \cdot(b \bmod M)) \bmod M$
$(a+b) \bmod M=((a \bmod M)+(b \bmod M)) \bmod M$

$$
\begin{aligned}
& a=k \cdot M+c \Rightarrow a \bmod M=c \\
& b=\ell \cdot M+d \Rightarrow b \bmod M=d
\end{aligned} \quad(c, d \in\{0, \ldots, M-1\})
$$

$$
\begin{aligned}
a \cdot b \bmod M & =\left(k \ell \cdot M^{2}+(k d+\ell c) \cdot M+c d\right) \bmod M \\
& =c d \bmod M=(a \bmod M) \cdot(b \bmod M) \bmod M
\end{aligned}
$$

Computations Modulo M

$x \bmod M=y \Leftrightarrow \exists q \in \mathbb{Z}: y=x+q \cdot M \wedge y \in\{0, \ldots, M-1\}$

- $x \bmod M:$ add/subtract M from x until the result is in the range $\{0, \ldots, M-1\}$

Some Rules:

$$
\begin{aligned}
& (a \cdot b) \bmod M=((a \bmod M) \cdot(b \bmod M)) \bmod M \\
& (a+b) \bmod M=((a \bmod M)+(b \bmod M)) \bmod M
\end{aligned}
$$

Moving the Window:

- Moving window from position s to position $s+1$

$$
\begin{aligned}
& t:=(T[s] \ldots T[s+M-1]) \bmod M \\
& t^{\prime}:=(T[s+1] \ldots T[s+M]) \bmod M \\
& t^{\prime}=\left(\left(t-T[s] \cdot\left(b^{M-1} \bmod M\right)\right) \cdot b+T[s+M]\right) \bmod M
\end{aligned}
$$

Computations Modulo M

$x \bmod M=y \Leftrightarrow \exists q \in \mathbb{Z}: y=x+q \cdot M \wedge y \in\{0, \ldots, M-1\}$

Negative Numbers

- We need that $x \bmod M$ is always in $\{0, \ldots, M-1\}$

Examples:

$$
24 \bmod 10=4, \quad 4 \bmod 10=4, \quad-4 \bmod 10=6
$$

- But: In Java / C++ / Python, we have $-x \% m=-(x \% m)$

Examples:

$$
24 \% 10=4, \quad 4 \% 10=4, \quad-4 \% 10=-4
$$

- Workaround: If the result of $x \% M$ is negative, just add M to end up in the correct domain.

Rabin-Karp Algorithm: Pseudocode

Text $T[0 \ldots n-1]$, Pattern $P[0 \ldots m-1]$, Base b, Modulus M
$h=b^{m-1} \bmod M$
$p=0$; t = 0;

Can easily be computed in time $O(m)$ and if done right even in time $O(\log m)$
for $i=0$ to $m-1$ do $p=(p \cdot b+P[i]) \bmod M$ $t=(t \cdot b+T[i]) \bmod M$
hash value of $P: p:=P \bmod M$
hash value of $T[0 \ldots m-1]$:
$t:=T[0 \ldots m-1] \bmod M$
for $s=0$ to $n-m$ do if $p==t$ then TestPosition(s)

$$
t=((t-T[s] \cdot h) \cdot b+T[s+m]) \bmod M
$$

$$
h=b^{m-1} \bmod M
$$

Rabin-Karp Algorithm: Running Time

Pre-Computation: $\mathbf{O}(\boldsymbol{m})$

In the worst case: $O(n \cdot m)$

- The wirst case happens if the numbers match in each step. Then one has to check each of the m characters in each step to see if the pattern has really been found.
- Should not happen too often is M is chosen in the right way...
- Except if the pattern really occurs very often ($\Theta(n)$ times)...

In the best case: $\boldsymbol{O}(\boldsymbol{n}+\boldsymbol{k} \cdot \boldsymbol{m}) \quad(k$: \#occurrences of P in $T)$

- In the best case, the numbers are only equal if the pattern is really found. The time cost is then $O(n+k \cdot m)$, if the pattern appears k times in the text.

Choice of the Parameters ...

Number Representation and Choice of M

- We would like that for $x \neq y$, it is "unlikely" that $h(x)=h(y)$ (for $h(x):=x \bmod M$)
- We assume that the characters in pattern and text are represented as digits of a number in base-b representation
- In our examples, we had $b=10$
- If b and M have a common divisor, $h(x)=h(y)$ for $x \neq y$ is not so unlikely ...

Extreme case $b=10, M=20$ (b is a divisor of M)
$P=\alpha_{m-1}, \ldots, \alpha_{1}, \alpha_{0}=\sum_{i=0}^{m-1} \alpha_{i} \cdot 10^{i} \quad 10^{i} \bmod 20=\left\{\begin{aligned} 1, & \text { if } i=0 \\ 10, & \text { if } i=1 \\ 0, & \text { if } i>1\end{aligned}\right.$

$$
P \bmod 20=\left(\alpha_{1} \cdot 10+\alpha_{0}\right) \bmod 20
$$

Choice of the Parameters ...

Number Representation and Choice of M

- We would like that for $x \neq y$, it is "unlikely" that $h(x)=h(y)$ (for $h(x):=x \bmod M$)
- We assume that the characters in pattern and text are represented as digits of a number in base- b representation
- In our examples, we had $b=10$
- If b and M have a common divisor, $h(x)=h(y)$ for $x \neq y$ is not so unlikely ...

We therefore choose

- The base b as a sufficiently large prime number
- For ASCII characters, we need $b>256$
- M can then be chosen (almost) arbitrarily, ideally as a power of 2
- Intermediate results are $<M \cdot b$, this should ideally fit within, e.g., 64 bits

Algorithm of Knuth, Morris, Pratt

- Can we always solve the problem in time $O(n)$?
- in the worst case ...

Let's again look at an example:

P d $u|b| a|d| b \mid i$

$$
\mathrm{d}|u| b|a| d|u| i
$$

$$
\mathrm{d}|\mathbf{u}| \mathrm{b}|\mathrm{a}| \mathrm{d}|\mathbf{u}| \mathrm{b} \mid \mathrm{i}
$$

$$
\mathrm{d}|\mathrm{u}| \mathrm{b}|\mathrm{a}| \mathrm{d} \mid \mathrm{b} \text {. } \mathrm{i}
$$

$$
\mathbf{d}|\mathbf{u}| \mathbf{b}|\mathbf{a}| \mathbf{d}|\mathbf{u}| \mathbf{b} \mid \mathbf{i}
$$

$$
\mathrm{d}|\mathbf{u}| \mathrm{b}|a| d|u| b \mid i
$$

$$
\mathrm{d}|\mathrm{u}| \mathrm{b}|\mathrm{~d}| \mathrm{u} \mid \mathrm{b} \mathrm{i}
$$

$$
\mathrm{d}|\mathbf{u}| \mathrm{b}|a| d|u| b \mid i
$$

Knuth-Morris-Pratt Algorithm

Idea:

- If, when testing the pattern P at some position t we find that $P[t]$ does not match with the corresponding character in the text, then we know that the positions $P[0 \ldots t-1]$ were correct.
- This can be used in the remainder of the search

Longest part before the mismatch that is also prefix of P.

$1^{\text {st }}$ position after mismatch

P

Knuth-Morris-Pratt Algorithm

Precomputation: Array S of length $m+1$

- $S[i]$: position in P, at which the search continues if when testing for the pattern, we have a mismatch at position i of the pattern
- $S[0]=-1, \quad S[1]=0$
- $S[m]$: position in P, at which one continues after P has been found successfully.

Example:

$$
\begin{aligned}
& P=[A, B, D, A, B, L, A, B, D, A, B, D] \\
& S=[-1,0,0,0,1,2,0,1,2,3,4,5,3]
\end{aligned}
$$

Knuth-Morris-Pratt Algorithm

$t=0 ; p=0 \quad / / t$: position in text, p : position in pattern while $t<n$ do
if $T[t]==P[p]$ then
if $p==m-1$ then pattern found at position $t-m+1$

$$
p=S[m] ; t=t+1
$$

else

$$
p=p+1 ; \quad t=t+1
$$

else
if $p==0$ then

$$
t=t+1
$$

else

$$
p=S[p]
$$

// characters don't match
// mismatch at first character

Knuth-Morris-Pratt Algorithm: Example

Pattern: ABCABC $\quad S=[-1,0,0,0,1,2,3]$
Text:

A D	A	B C	C	D	A			A G		A B		A	B		A		C A		
A B	C	A B	C																
A	B	C A	B	C															
	A	B C	C A	A	C														
				A	C	A	B C	C											
				A	B	C	A	B C											
					A	B		A B	B C	C									
								A B	B C	C A	B	C							
										B C	C A	B	C						
										A B	B C	A	B	C					
												A	C	A	B	C			
													B	C	A	B	C		
																B	C A		

Knuth-Morris-Pratt Alg.: Running Time

Running time without initialization of array $S: O(n)$
$t=0 ; p=0$
while $t<n$ do

$$
\begin{aligned}
& \text { if } T[t]==P[p] \text { then } \\
& \text { if } p==m-1 \text { then } \\
& \text { pattern found } \\
& p=S[m] ; t=t+1 \\
& \text { else } \\
& p=p+1 ; t=t+1
\end{aligned}
$$

else
if $p==0$ then

$$
t=t+1
$$

else

$$
p=S[p]
$$

Initialization

Precomputation of Array S :

- $P=[\mathrm{A}, \mathrm{B}, \mathrm{D}, \mathrm{A}, \mathrm{B}, \mathrm{L}, \mathrm{A}, \mathrm{B}, \mathrm{D}, \mathrm{A}, \mathrm{B}, \mathrm{D}]$

$$
S=[-1,0,0,0,1,2,0,1,2,3,4,5,3]
$$

- At position i in S (for $i \in\{2, \ldots, m\}$), we have

$$
S[i]:=\min _{k<i}\{P[i-k \ldots i-1]=P[0 \ldots k-1]\}
$$

- $S[i]$: Length of the longest proper part of $P[0 \ldots i-1]$, such that the part ends at position $i-1$ and the same part is also prefix of P.

Computation of $S[i]$:

- We will look at this next...

Computation of $\mathrm{S}[\mathrm{i}]$

- $S[0]=-1, S[1]=0$
- $i>1$: $\quad \boldsymbol{P}$

Case $1: P[i-1]=P[S[i-1]]$

- If $P[i-1]=P[S[i-1]]$, then $S[i]=S[i-1]+1$

Computation of $\mathrm{S}[\mathrm{i}]$

Case $2: P[i-1] \neq P[S[i-1]]$

- Longest possible prefix and suffix has length $S[S[i-1]]+1$
- Test if $P[i-1]=S[S[i-1]]$?
- If yes, then we have $S[i]=S[S[i-1]]+1$
- If no, then the next position we need to test is $S[S[S[i-1]]]$
- etc.

Computation of $S[i]$: Pseudocode

$h=S[i-1]$
while $h \geq 0$ do
if $P[i-1]==P[h]$ then

$$
S[i]=h+1 ; h=-2
$$

else

$$
h=S[h]
$$

if $h==-1$ then $S[i]=0$
If $S[i]=S[i-1]+1: 1$ loop iteration
If $S[i] \leq S[i-1]$:

- Value of h decreases in each loop iteration
- At the end, we have $S[i]=h+1$
- Number of loop iterations $\leq \Delta h+1=S[i-1]-S[i]+2$

Computation of $S[i]$: Running Time

If $S[i]=S[i-1]+1$:

- \#loop iterations $=1=S[i-1]-S[i]+2$

Falls $S[i] \leq S[i-1]$:

- \#loop iterations $\leq \Delta h+1=S[i-1]-S[i]+2$

Overall Running Time $\boldsymbol{T}(\boldsymbol{m})$:

$$
\begin{aligned}
& T(m) \leq \sum_{i=2}^{m}(S[i-1]-S[i]+2) \\
&= 2(m-1)+(S[1]-S[2]+S[2]-S[3]+S[3]-\cdots \\
&+\ldots-S[m-1]+S[m-1]-S[m]) \\
&= 2(m-1)+ \\
& S[1]-S[m]=O(m)
\end{aligned}
$$

Knuth-Morris-Pratt Algorithm: Summary

Knuth-Morris-Pratt Algorithm:

- First computes the array S of length $m+1$ in time $O(m)$
- only depends on the pattern P
- describes at each position of the pattern, where (in the pattern) we have to continue after a mismatch
- With the help of S, all occurrences of the pattern P in the text T can be found in time $O(n)$.
- In each step, one can either increment the current search position in the text T or one can move the position of the search window in T by at least 1 position to the right.

Overall Running Time: $\boldsymbol{O}(\boldsymbol{m}+\boldsymbol{n})=\boldsymbol{O}(n)$

