
Algorithms and Data StructuresFabian Kuhn

Lecture 12

String Matching (Text Search)

Algorithms and Data Structures

Fabian Kuhn

Algorithms and Complexity

Algorithms and Data StructuresFabian Kuhn

Given:

• two strings

• text 𝑇 (typically long)

• pattern 𝑃 (typically short)

Goal:

• Find all occurrences of 𝑃 in 𝑇

Assumptions:

• Length of text 𝑇 : 𝒏, Length of pattern 𝑃 : 𝒎 𝒎 ≪ 𝒏

Example:

• Search pattern 𝑃 =“ABCA” in the following string

𝑇 = ABI CLABCAD LHABCABCA KAHBCA ALBCABABCABL LKAGA

2

Text Search / String Matching

Algorithms and Data StructuresFabian Kuhn

• This is obviously important...

• Required in every text editor
– Every editor has a find function

• Supported by higher programming languages:
– Java: String.indexOf(String pattern, int fromThisPosition)

– C++: std::string.find(std::string str, size_t fromThisPosition)

– Python: str.find(pattern, from), where str is a string

3

Motivation

Algorithms and Data StructuresFabian Kuhn

• Go through the text from left to right

• The pattern can occur at each of the positions 𝑠 = 0,… , 𝑛 − 𝑚

• Test at each of these positions if there is a match between the
pattern an the corresponding part of the text,
– by going trough the pattern character by character and comparing with the

corresponding character in the text.

4

Naïve Algorithm

𝑻

𝑷

0 𝑛 − 1𝑛 − 𝑚

Algorithms and Data StructuresFabian Kuhn

TestPosition(𝒔): // tests if 𝑇[𝑠, … , 𝑠 + 𝑚 − 1] == 𝑃

𝑡 = 0

while 𝑡 < 𝑚 and 𝑇 𝑠 + 𝑡 == 𝑃 𝑡 do

𝑡 = 𝑡 + 1

return (𝑡 == 𝑚)

Laufzeit:

#Iter.≔ ൝
𝑚, if 𝑃 is found
1 + min

0<𝑖<𝑚
𝑇 𝑠 + 𝑖 ≠ 𝑃 𝑖 , else

• Worst Case: 𝑂 𝑚
– In the worst case, one has to check all 𝑚 positions of 𝑃

– This is in particular the case if 𝑃 is found

• Best Case: 𝑂 1
– In the best case, we already see at the first character that there is no match

(is 𝑇 𝑠 ≠ 𝑃 0)
5

Naïve Algorithm

Algorithms and Data StructuresFabian Kuhn

TestPosition(𝒔): // tests if 𝑇[𝑠, … , 𝑠 + 𝑚 − 1] == 𝑃

𝑡 = 0

while 𝑡 < 𝑚 and 𝑇 𝑠 + 𝑡 == 𝑃 𝑡 do

𝑡 = 𝑡 + 1

return (𝑡 == 𝑚)

String-Matching:

for 𝑠 from 0 to 𝑛 −𝑚 do

if TestPosition(𝑠) then

report found match at position 𝑠

Running Time:

• Worst Case: 𝑂 𝑛 ⋅ 𝑚

• Best Case : 𝑂 𝑛

6

Naïve Algorithm

Algorithms and Data StructuresFabian Kuhn

Basic Idea

• For simplicity , we assume that the text only consists of the digits
0,… , 9
– Then we can understand the pattern and the text window as numbers

• We again move a window of length 𝑚 over the text and check at
each position if the pattern matches.

• If the window is moved by one to the right, the new number can
be computed in a simple way from the old number

7

Rabin-Karp Algorithm

9 6 4 5 5 6 5 0 0 1 8 9 0 8 9 7 7 6 5 0 0 1 1 2 3 5 4 8 9 6

6 5 0 0 1

𝑻

𝑷

0 𝑛 − 1𝑛 − 𝑚

9 6 4 5 5 6

old window new window

9 6
− +

64556 = 96455 − 9 ⋅ 10𝑚−1 ⋅ 10 + 6

Algorithms and Data StructuresFabian Kuhn

Observations:

• In each step, we just have to compare two numbers.

• If the numbers are equal, the pattern appears at that position.

• When moving the window by one position, the new number can
be computed from the old number in time 𝑂 1 .

• If we can compare two numbers in time 𝑂 1 , then the algorithm
has a running time of 𝑂 𝑛 .

• Problem: The numbers can be very large (Θ 𝑚 bits)
– Comparing two Θ 𝑚 -bit numbers requires time Θ 𝑚

– Not better than the naïve algorithm

• Idea: Apply hashing and compare hash values
– If the window is moved by one to the right, we need to be able to compute

the new hash value from the old hash value in time 𝑂 1 .

8

Rabin-Karp Algorithm

Algorithms and Data StructuresFabian Kuhn

Solution of Rabin and Karp:

• We calculate everything with numbers modulo 𝑀
– 𝑀 should be as large as possible, however still small enough such that

numbers in the range 0, … ,𝑀 − 1 fit in one memory cell (e.g., 64 Bit).

• Pattern and text window are then both numbers in

0,… ,𝑀 − 1

• When moving the search window, the new number can again be
computed in time 𝑂 1 .
– We will look at this afterwards...

• If the pattern is found, the two numbers are equal. If not, the can
nevertheless be equal
– If the numbers are equal, then we again check if we have found the pattern

in a character-by-character way as in the naïve algorithm.

9

Rabin-Karp Algorithmus

Algorithms and Data StructuresFabian Kuhn

Text: 𝟓𝟕𝟐𝟖𝟑𝟎𝟑𝟓𝟒𝟖𝟐𝟔 Pattern: 𝟐𝟖𝟑 Modulus 𝑴 = 𝟓

Pattern: 283 mod 5 = 3

1st window: 572 mod 5 = 2

2nd window: 728 mod 5 = 3

3rd window: 283 mod 5 = 3

10

Rabin-Karp Algorithm: Example

in 𝑂 1 Zeit

test: 728 ≠ 283 ⟹ no match

test: 283 = 283 ⟹ pattern found

Algorithms and Data StructuresFabian Kuhn

𝑥 mod 𝑀 = 𝑦 ⟺ ∃𝑞 ∈ ℤ: 𝑦 = 𝑥 + 𝑞 ⋅ 𝑀 ∧ 𝑦 ∈ {0,… ,𝑀 − 1}

• 𝑥 mod 𝑀: add/subtract 𝑀 from 𝑥 until the result is in the range
0,… ,𝑀 − 1

Some Rules:

𝑎 ⋅ 𝑏 mod 𝑀 = 𝑎 mod 𝑀 ⋅ 𝑏 mod 𝑀 mod 𝑀

𝑎 + 𝑏 mod 𝑀 = 𝑎 mod 𝑀 + 𝑏 mod 𝑀 mod 𝑀

𝑎 = 𝑘 ⋅ 𝑀 + 𝑐 ⟹ 𝑎 mod 𝑀 = 𝑐
𝑏 = ℓ ⋅ 𝑀 + 𝑑 ⟹ 𝑏 mod 𝑀 = 𝑑

𝑎 ⋅ 𝑏 mod 𝑀 = 𝑘ℓ ⋅ 𝑀2 + 𝑘𝑑 + ℓ𝑐 ⋅ 𝑀 + 𝑐𝑑 mod 𝑀

= 𝑐𝑑 mod 𝑀 = 𝑎 mod 𝑀 ⋅ 𝑏 mod 𝑀 mod 𝑀

11

Computations Modulo 𝑀

𝑐, 𝑑 ∈ 0,… ,𝑀 − 1

Algorithms and Data StructuresFabian Kuhn

𝑥 mod 𝑀 = 𝑦 ⟺ ∃𝑞 ∈ ℤ: 𝑦 = 𝑥 + 𝑞 ⋅ 𝑀 ∧ 𝑦 ∈ {0,… ,𝑀 − 1}

• 𝑥 mod 𝑀: add/subtract 𝑀 from 𝑥 until the result is in the range
0,… ,𝑀 − 1

Some Rules:

𝑎 ⋅ 𝑏 mod 𝑀 = 𝑎 mod 𝑀 ⋅ 𝑏 mod 𝑀 mod 𝑀

𝑎 + 𝑏 mod 𝑀 = 𝑎 mod 𝑀 + 𝑏 mod 𝑀 mod 𝑀

Moving the Window:

• Moving window from position 𝑠 to position 𝑠 + 1

𝑡 ≔ 𝑇 𝑠 …𝑇 𝑠 +𝑀 − 1 mod 𝑀,
𝑡′ ≔ 𝑇 𝑠 + 1 …𝑇 𝑠 +𝑀 mod 𝑀

𝑡′ = 𝑡 − 𝑇 𝑠 ⋅ 𝑏𝑀−1 mod 𝑀 ⋅ 𝑏 + 𝑇 𝑠 +𝑀 mod 𝑀

12

Computations Modulo 𝑀

Algorithms and Data StructuresFabian Kuhn

𝑥 mod 𝑀 = 𝑦 ⟺ ∃𝑞 ∈ ℤ: 𝑦 = 𝑥 + 𝑞 ⋅ 𝑀 ∧ 𝑦 ∈ {0,… ,𝑀 − 1}

Negative Numbers

• We need that 𝑥 mod 𝑀 is always in 0,… ,𝑀 − 1

Examples:

24 mod 10 = 4, 4 mod 10 = 4, −4 mod 10 = 6

• But: In Java / C++ / Python, we have −𝑥 %𝑚 = − 𝑥 %𝑚

Examples:

24% 10 = 4, 4 % 10 = 4, −4 % 10 = −4

• Workaround: If the result of 𝑥 %𝑀 is negative, just add 𝑀 to end
up in the correct domain.

13

Computations Modulo 𝑀

Algorithms and Data StructuresFabian Kuhn

Text 𝑻[𝟎…𝒏 − 𝟏], Pattern 𝑷[𝟎…𝒎− 𝟏], Base 𝒃, Modulus 𝑴

ℎ = 𝑏𝑚−1 mod 𝑀

𝑝 = 0; t = 0;

for 𝑖 = 0 to 𝑚− 1 do
𝑝 = 𝑝 ⋅ 𝑏 + 𝑃 𝑖 mod 𝑀
𝑡 = 𝑡 ⋅ 𝑏 + 𝑇 𝑖 mod 𝑀

for 𝑠 = 0 to 𝑛 −𝑚 do
if 𝑝 == 𝑡 then

TestPosition(𝑠)

𝑡 = 𝑡 − 𝑇 𝑠 ⋅ ℎ ⋅ 𝑏 + 𝑇 𝑠 +𝑚 mod 𝑀

14

Rabin-Karp Algorithm: Pseudocode

hash value of 𝑃: 𝑝 ≔ 𝑃 mod 𝑀

hash value of 𝑇[0…𝑚 − 1]:
𝑡 ≔ 𝑇[0…𝑚 − 1] mod 𝑀

Can easily be computed in time 𝑂 𝑚 and if
done right even in time 𝑂 log𝑚

ℎ = 𝑏𝑚−1 mod 𝑀 update 𝑡 in time 𝑂 1

Time 𝑂 𝑚 if the hash
values match

Algorithms and Data StructuresFabian Kuhn

Pre-Computation: 𝑶 𝒎

In the worst case: 𝑶 𝒏 ⋅ 𝒎

• The wirst case happens if the numbers match in each step. Then
one has to check each of the 𝑚 characters in each step to see if
the pattern has really been found.
– Should not happen too often is 𝑀 is chosen in the right way...

– Except if the pattern really occurs very often (Θ 𝑛 times)...

In the best case: 𝑶 𝒏 + 𝒌 ⋅ 𝒎 (𝑘: #occurrences of 𝑃 in 𝑇)

• In the best case, the numbers are only equal if the pattern is really
found. The time cost is then 𝑂 𝑛 + 𝑘 ⋅ 𝑚 , if the pattern appears 𝑘
times in the text.

15

Rabin-Karp Algorithm: Running Time

Algorithms and Data StructuresFabian Kuhn

Number Representation and Choice of 𝑴

• We would like that for 𝑥 ≠ 𝑦, it is “unlikely” that ℎ 𝑥 = ℎ 𝑦
(for ℎ 𝑥 ≔ 𝑥 mod 𝑀)

• We assume that the characters in pattern and text are represented
as digits of a number in base-𝑏 representation
– In our examples, we had 𝑏 = 10

• If 𝑏 and 𝑀 have a common divisor, ℎ 𝑥 = ℎ 𝑦 for 𝑥 ≠ 𝑦 is not so
unlikely …

16

Choice of the Parameters ...

Extreme case 𝒃 = 𝟏𝟎,𝑴 = 𝟐𝟎 (𝒃 is a divisor of 𝑴)

𝑷𝐦𝐨𝐝 𝟐𝟎 = 𝜶𝟏 ⋅ 𝟏𝟎 + 𝜶𝟎 𝐦𝐨𝐝 𝟐𝟎

𝑃 = 𝛼𝑚−1, … , 𝛼1, 𝛼0 =

𝑖=0

𝑚−1

𝛼𝑖 ⋅ 10
𝑖 10𝑖 mod 20 = ቐ

1, if 𝑖 = 0
10, if 𝑖 = 1
0, if 𝑖 > 1

Algorithms and Data StructuresFabian Kuhn

Number Representation and Choice of 𝑴

• We would like that for 𝑥 ≠ 𝑦, it is “unlikely” that ℎ 𝑥 = ℎ 𝑦
(for ℎ 𝑥 ≔ 𝑥 mod 𝑀)

• We assume that the characters in pattern and text are represented
as digits of a number in base-𝑏 representation
– In our examples, we had 𝑏 = 10

• If 𝑏 and 𝑀 have a common divisor, ℎ 𝑥 = ℎ 𝑦 for 𝑥 ≠ 𝑦 is not so
unlikely …

We therefore choose

• The base 𝑏 as a sufficiently large prime number
– For ASCII characters, we need 𝑏 > 256

• 𝑀 can then be chosen (almost) arbitrarily, ideally as a power of 2
– Intermediate results are < 𝑀 ⋅ 𝑏, this should ideally fit within, e.g., 64 bits

17

Choice of the Parameters ...

Algorithms and Data StructuresFabian Kuhn

• Can we always solve the problem in time 𝑂 𝑛 ?
– in the worst case ...

Let’s again look at an example:

18

Algorithm of Knuth, Morris, Pratt

d u b a d u b a d u d a d u b i d u b a d u b i d u b i d u𝑻

d u b a d u b i𝑷

d u b a d u b i

d u b a d u b i

d u b a d u b i

d u b a d u b i

d u b a d u b i

d u b a d u b i

d u b a d u b i

Algorithms and Data StructuresFabian Kuhn

Idea:

• If, when testing the pattern 𝑃 at some position 𝑡 we find that 𝑃[𝑡]
does not match with the corresponding character in the text, then
we know that the positions 𝑃[0… 𝑡 − 1] were correct.

• This can be used in the remainder of the search

19

Knuth-Morris-Pratt Algorithm

𝑷

1st position after mismatch
Longest part before the mismatch

that is also prefix of 𝑃.

𝑷

1st position that now has to
be checked.

Algorithms and Data StructuresFabian Kuhn

Precomputation: Array 𝑆 of length 𝑚 + 1

• 𝑆[𝑖]: position in 𝑃, at which the search continues if when testing
for the pattern, we have a mismatch at position 𝑖 of the pattern

• 𝑆 0 = −1, 𝑆 1 = 0

• 𝑆 𝑚 : position in 𝑃, at which one continues after 𝑃 has been
found successfully.

Example:
𝑃 = [A, B, D, A, B, L, A, B, D, A, B, D]

𝑆 = [-1, 0, 0, 0, 1, 2, 0, 1, 2, 3, 4, 5, 3]

20

Knuth-Morris-Pratt Algorithm

Algorithms and Data StructuresFabian Kuhn

𝑡 = 0; 𝑝 = 0 // 𝑡: position in text, 𝑝: position in pattern

while 𝑡 < 𝑛 do

if 𝑇 𝑡 == 𝑃[𝑝] then // characters match

if 𝑝 == 𝑚 − 1 then // pattern found

pattern found at position 𝑡 − 𝑚 + 1

𝑝 = 𝑆 𝑚 ; 𝑡 = 𝑡 + 1

else

𝑝 = 𝑝 + 1; 𝑡 = 𝑡 + 1

else // characters don’t match

if 𝑝 == 0 then // mismatch at first character

𝑡 = 𝑡 + 1

else

𝑝 = 𝑆 𝑝
21

Knuth-Morris-Pratt Algorithm

𝑷

𝑷

𝒑𝑺[𝒑]

Algorithms and Data StructuresFabian Kuhn

Pattern: ABCABC 𝑆 = [−1,0,0,0,1,2,3]

Text:

22

Knuth-Morris-Pratt Algorithm: Example

A D A B C D A B C A G A B V A B C A B C A B C

A B C A B C

A B C A B C

A B C A B C

A B C A B C

A B C A B C

A B C A B C

A B C A B C

A B C A B C

A B C A B C

A B C A B C

A B C A B C

A B C A B C

Algorithms and Data StructuresFabian Kuhn

Running time without initialization of array 𝑺: 𝑶(𝒏)

𝑡 = 0; 𝑝 = 0

while 𝑡 < 𝑛 do

if 𝑇 𝑡 == 𝑃[𝑝] then

if 𝑝 == 𝑚 − 1 then

pattern found

𝑝 = 𝑆 𝑚 ; 𝑡 = 𝑡 + 1

else

𝑝 = 𝑝 + 1; 𝑡 = 𝑡 + 1

else

if 𝑝 == 0 then

𝑡 = 𝑡 + 1

else

𝑝 = 𝑆 𝑝

23

Knuth-Morris-Pratt Alg.: Running Time

In each step,

or

the position in the
text is incremented

the window
is moved

Algorithms and Data StructuresFabian Kuhn

Precomputation of Array 𝑺:

• 𝑃 = [A, B, D, A, B, L, A, B, D, A, B, D]

𝑆 = [-1, 0, 0, 0, 1, 2, 0, 1, 2, 3, 4, 5, 3]

• At position 𝑖 in 𝑆 (for 𝑖 ∈ 2,… ,𝑚), we have

𝑺 𝒊 ≔ 𝐦𝐢𝐧
𝒌<𝒊

𝑷 𝒊 − 𝒌… 𝒊 − 𝟏 = 𝑷 𝟎…𝒌 − 𝟏

• 𝑆 𝑖 : Length of the longest proper part of 𝑃[0… 𝑖 − 1],
such that the part ends at position 𝑖 − 1 and the same part is
also prefix of 𝑃.

Computation of 𝑺 𝒊 :

• We will look at this next…

24

Initialization

Algorithms and Data StructuresFabian Kuhn

• 𝑆 0 = −1, 𝑆 1 = 0

• 𝑖 > 1:

Case 1 : 𝑷 𝒊 − 𝟏 = 𝑷 𝑺 𝒊 − 𝟏

• If 𝑃 𝑖 − 1 = 𝑃 𝑆 𝑖 − 1 , then 𝑆 𝑖 = 𝑆 𝑖 − 1 + 1

25

Computation of S[i]

𝑷

𝑖

𝑆[𝑖] 𝑆[𝑖]

𝑷

𝑖

𝑆[𝑖 − 1] 𝑆[𝑖 − 1]

𝑖 − 1𝑆 𝑖 − 1

Algorithms and Data StructuresFabian Kuhn

Case 2 : 𝑷 𝒊 − 𝟏 ≠ 𝑷 𝑺 𝒊 − 𝟏

• Longest possible prefix and suffix has length 𝑆 𝑆 𝑖 − 1 + 1

– Test if 𝑃 𝑖 − 1 = 𝑆 𝑆 𝑖 − 1 ?

– If yes, then we have 𝑆 𝑖 = 𝑆 𝑆 𝑖 − 1 + 1

– If no, then the next position we need to test is 𝑆 𝑆 𝑆 𝑖 − 1

– etc.

26

Computation of S[i]

𝑷

𝑖

≤ 𝑆 𝑆 𝑖 − 1

𝑖 − 1𝑆 𝑖 − 1𝑆 𝑆 𝑖 − 1

Algorithms and Data StructuresFabian Kuhn

ℎ = 𝑆 𝑖 − 1

while ℎ ≥ 0 do

if 𝑃 𝑖 − 1 == 𝑃 ℎ then

𝑆 𝑖 = ℎ + 1; ℎ = −2
else

ℎ = 𝑆 ℎ

if ℎ == −1 then 𝑆 𝑖 = 0

If 𝑺 𝒊 = 𝑺 𝒊 − 𝟏 + 𝟏: 1 loop iteration

If 𝑺 𝒊 ≤ 𝑺[𝒊 − 𝟏]:

• Value of ℎ decreases in each loop iteration

• At the end, we have 𝑆 𝑖 = ℎ + 1

• Number of loop iterations ≤ Δℎ + 1 = 𝑆 𝑖 − 1 − 𝑆 𝑖 + 2

27

Computation of 𝑆[𝑖]: Pseudocode

Observation:

𝑆 𝑖 ≤ 𝑆 𝑖 − 1 + 1

Algorithms and Data StructuresFabian Kuhn

If 𝑺 𝒊 = 𝑺 𝒊 − 𝟏 + 𝟏:

• #loop iterations = 1 = 𝑆 𝑖 − 1 − 𝑆 𝑖 + 2

Falls 𝑺 𝒊 ≤ 𝑺[𝒊 − 𝟏]:

• #loop iterations ≤ Δℎ + 1 = 𝑆 𝑖 − 1 − 𝑆 𝑖 + 2

Overall Running Time 𝑻 𝒎 :

𝑇 𝑚 ≤

𝑖=2

𝑚

𝑆 𝑖 − 1 − 𝑆 𝑖 + 2

= 2 𝑚 − 1 + (𝑆 1 − 𝑆 2 + 𝑆 2 − 𝑆 3 + 𝑆 3 −⋯
)+ … − 𝑆 𝑚 − 1 + 𝑆 𝑚 − 1 − 𝑆[𝑚]

= 2 𝑚 − 1 + 𝑆 1 − 𝑆 𝑚 = 𝑂 𝑚

28

Computation of 𝑆[𝑖]: Running Time

Algorithms and Data StructuresFabian Kuhn

Knuth-Morris-Pratt Algorithm:

• First computes the array 𝑆 of length 𝑚+ 1 in time 𝑂 𝑚
– only depends on the pattern 𝑃

– describes at each position of the pattern, where (in the pattern) we have to
continue after a mismatch

• With the help of 𝑆, all occurrences of the pattern 𝑃 in the text 𝑇
can be found in time 𝑂 𝑛 .
– In each step, one can either increment the current search position in the

text 𝑇 or one can move the position of the search window in 𝑇 by at least
1 position to the right.

Overall Running Time: 𝑶 𝒎+ 𝒏 = 𝑶(𝒏)

29

Knuth-Morris-Pratt Algorithm: Summary

