Algorithms and Data Structures Conditional Course

Lecture 4

Hash Tables I: Separate Chaining and Open Addressing

Fabian Kuhn Algorithms and Complexity

Abstract Data Types: Dictionary

Dictionary: (also: maps, associative arrays)

 holds a collection of elements where each element is represented by a unique key

Operations:

- *create* : creates an empty dictionary
- *D.insert(key, value)* : inserts a new (key, value)-pair
 - If there already is an entry with the same key, the old entry is replaced
- *D.find(key)* : returns entry with key *key*
 - If there is such an entry (returns some default value otherwise)
- *D.delete(key)* : deletes entry with key *key*

• So far, we saw 3 simple dictionary implementations

	Linked List (unsorted)	Array (unsorted)	Array (sorted)
insert	0 (1)	0 (1)	O (n)
delete	O (n)	O (n)	O (n)
find	0 (n)	O (n)	$O(\log n)$

n: current number of elements in dictionary

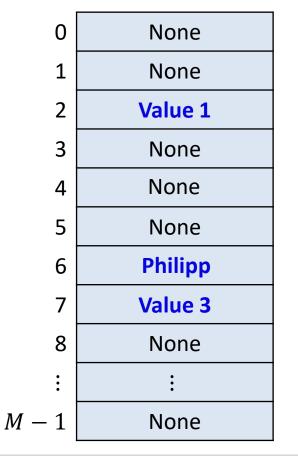
- Often the most important operation: find
- Can we improve find even more?
- Can we make all operations fast?

52

With an array, we can make everything fast,

... if the array is sufficiently large.

Assumption: Keys are integers between 0 and M - 1



find(2) \rightarrow "Value 1"

insert(6, "Philipp")

delete(4)

UNI REI

Direct Addressing : Problems

- 1. Direct addressing requires too much space!
 - If each key can be an arbitrary *int* (32 bit):
 We need an array of size 2³² ≈ 4 · 10⁹.
 For 64 bit integers, we even need more than 10¹⁹ entries ...

2. What if the keys are no integers?

- Where do we store the (key, value)-pair ("Philipp", "assistent")?
- Where do we store the key 3.14159?
- Pythagoras: "Everything is number"

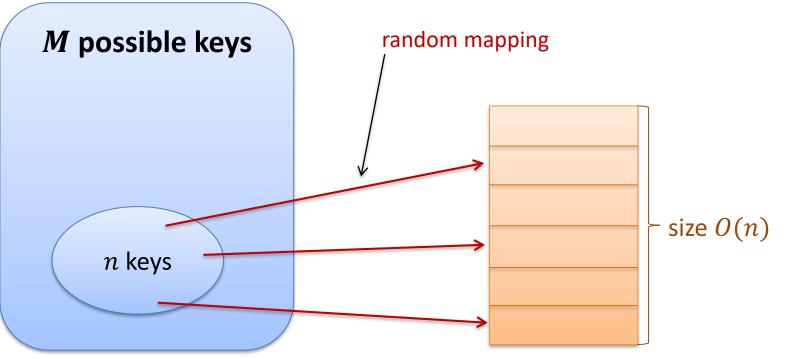
"Everything" can be stored as a sequence of bits: Interpret bit sequence as integer

Makes the space problem even worse!

Hashing : Idea

Problem

- Huge space *S* of possible keys
- Number *n* of acutally used keys is **much** smaller
 - We would like to use an array of size $\approx n$ (resp. O(n))...
- How can be map M keys to O(n) array positions?



Key Space S, |S| = M (all possible keys)

Array size m (\approx maximum #keys we want to store)

Hash Function

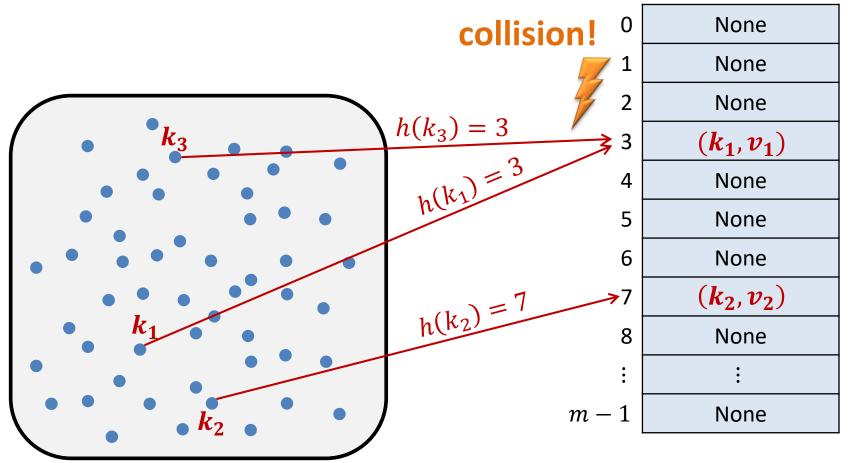
$$h: S \to \{0, \dots, m-1\}$$

- Maps keys of key space *S* to array positions
- *h* should be as close as possible to a random function
 - all numbers in $\{0, ..., m-1\}$ mapped to from roughly the same #keys
 - similar keys should be mapped to different positions
- *h* should be computable as fast as possible
 - if possible in time O(1)
 - will be considered a basic operation in the following (cost = 1)

Hash Tables

- 1. *insert*(k_1, v_1)
- 2. *insert*(k_2, v_2)
- 3. *insert*(k_3, v_3)

UNI FREIBURG



Collision:

Two keys k_1 , k_2 collide if $h(k_1) = h(k_2)$.

What should we do in case of a collision?

- Can we choose hash function such that there are no collisions?
 - This is only possible if we know the used keys before choosing the hash function.
 - Even then, choosing such a hash function can be very expensive.
- Use another hash function?
 - One would need to choose a new hash function for every new collision
 - A new hash function means that one needs to relocate all the already inserted values in the hash table.
- Further ideas?

Hash Tables : Collisions

Approaches for Dealing With Collisions

- Assumption: Keys k_1 and k_2 collide
- 1. Store both (key, value) pairs at the same position
 - The hash table needs to have space to store multiple entries at each position.
 - We do not want to just increase the size of the table (then, we chould have just started with a larger table...)
 - Solution: Use linked lists
- 2. Store second key at a different position
 - Can for example be done with a second hash function
 - Problem: At the alternative position, there could again be a collision
 - There are multiple solutions
 - One solution: use many possible new positions
 (One has to make sure that these positions are usually not used...)

Separate Chaining

Each position of the hash table points to a linked list •

Hash table

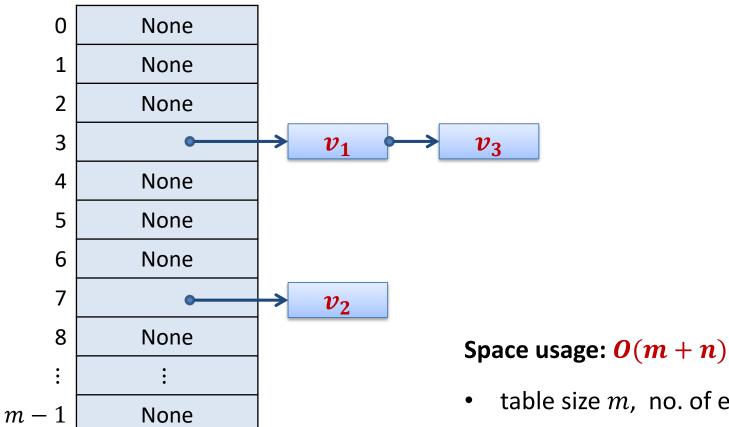


table size m, no. of elements n

NH

Runtime Hash Table Operations

To make it simple, first for the case without collisions...

- *create:* **0**(1)
- *insert:* **0**(1)
- *find:* **0**(1)
- *delete:* **0**(1)
- As long as there are no collisions, hash tables are extremely fast (if hash functions can be evaluated in constant time)
- We will see that this is also true with collisions...

Runtime Separate Chaining

Now, let's consider collisions...

create: **0**(1)

- *insert:* O(1 + length of list)
 - If one does not need to check if the key is already contained, insert can even be always be done in time O(1).

find: O(1 + length of list)

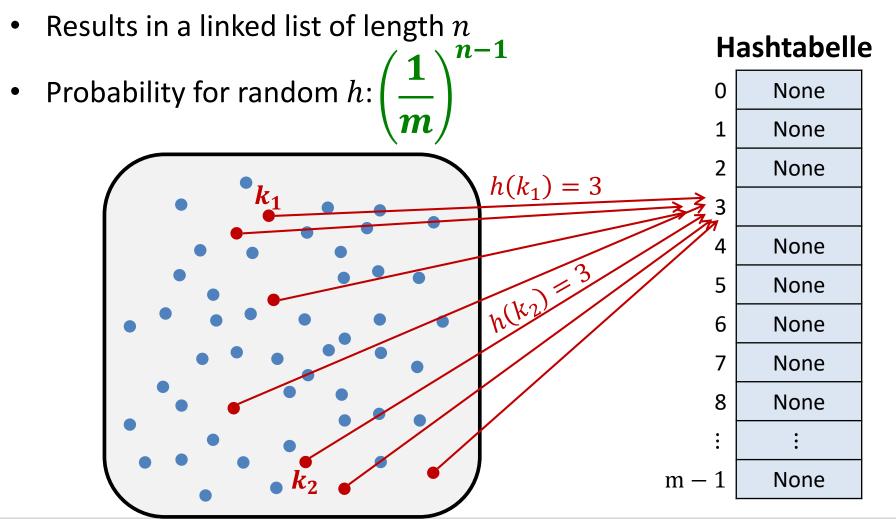
delete: O(1 + length of list)

• We therefore has to see how long the lists become.

Separate Chaining : Worst Case

Worst case for separate chaining:

• All keys that appear have the same hash value



N

Length of Linked Lists

- Cost of *insert, find,* and *delete* depends on the length of the corresponding list
- How long do the lists become?
 - Assumption: Size of hash table m, number of entries n
 - Additional assumption: Hash function *h* behaves as a random function
- List lengths correspond to the following random experiment

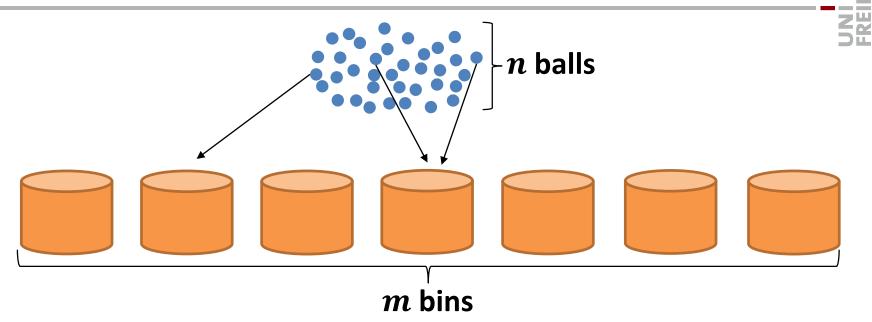
$m{m}$ bins and $m{n}$ balls

- Each ball is thrown (independently) into a random bin
- Longest list = maximal no. of balls in the same bin
- Average list length = average no. of balls per bin

m bins, *n* balls \rightarrow average #balls per bin: n/m

Z

Balls and Bins

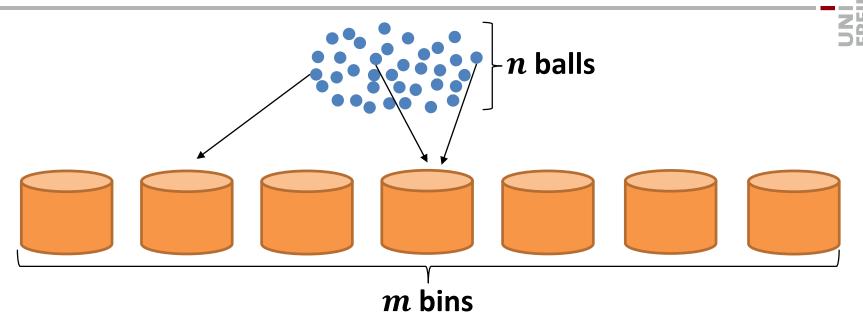


• Worst-case runtime = $\Theta(\max \# balls \text{ per bin})$

with high probability (whp) $\in O\left(\frac{n}{m} + \frac{\log n}{\log \log n}\right)$ - for $n \le m : O\left(\frac{\log n}{\log \log n}\right)$

• The longest list will have length $\Theta\left(\frac{\log n}{\log \log n}\right)$.

Balls and Bins



Expected runtime (for every key):

- Key in table:
 - List length of a random entry
 - Corresponds to #balls in bin of a random ball
- Key not in table:
 - Length of a random list, i.e., #balls in a random bin

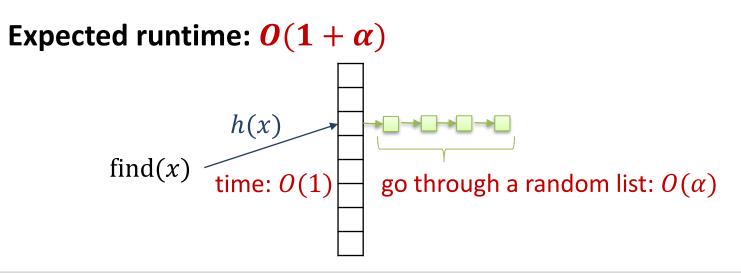
Load α of hash table:

 $\alpha \coloneqq \frac{n}{m}$

Cost of search:

• Search for key x that is not contained in hash table

h(x) is a uniformly random position \rightarrow expected list length = average list length = α



Load α of hash table:

 $\alpha \coloneqq \frac{n}{m}$

Cost of search :

- Search for key x that is contained in hash table
 How many keys y ≠ x are in the list of x?
- The other keys are distributed randomly, the expected number thus corresponds to the expected number of entries in a random list of a hash table with n 1 entries (all entries except x).

• This is:
$$\frac{n-1}{m} < \frac{n}{m} = \alpha \rightarrow$$
 expected list length of $x < 1 + \alpha$

Expected runtime: $O(1 + \alpha)$

create:

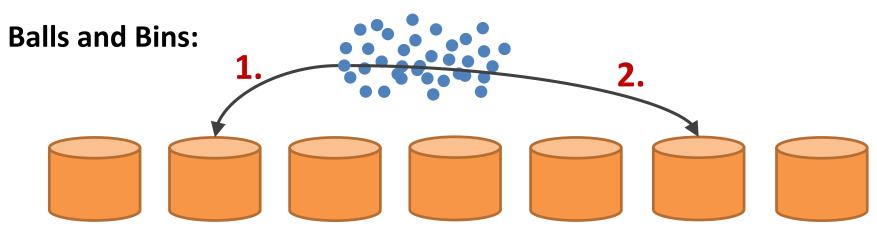
• runtime O(1)

insert, find & delete:

- worst case: $\Theta(n)$
- worst case with high probability (for random h): $O\left(\alpha + \frac{\log n}{\log \log n}\right)$
- Expected runtime (for fixed key x): $O(1 + \alpha)$
 - holds for successful and unsuccessful searches
 - if $\alpha = O(1)$ (i.e., hash table has size $\Omega(n)$), this is O(1)
- Hash tables are extremely efficient and typically have O(1) runtime for all operations.

Idea:

- Use two hash functions h_1 and h_2
- Store key x in the shorter of the two lists at $h_1(x)$ and $h_2(x)$



- Put ball in bins with fewer balls
- For n balls, m bins: maximal no. of balls per bin (whp): $n/m + O(\log \log m)$
- Known as "power of two choices"

Hashing with Open Addressing

Goal:

REIBURG

- store everything directly in the hash table (in the array)
- open addressing = closed hashing
- no lists

Basic idea:

- In case of collisions, we need to have alternative positions
- Extend hash function to get

 $h: S \times \{0, \dots, m-1\} \rightarrow \{0, \dots, m-1\}$

- Provides hash values $h(x, 0), h(x, 1), h(x, 2), \dots, h(x, m-1)$
- For every $x \in S$, h(x, i) should cover all m values (for different i)
- Inserting a new element with key *x*:
 - Try positions one after the other (until a free one is found) $h(x, 0), h(x, 1), h(x, 2), \dots, h(x, m - 1)$

Fabian Kuhn

Linear Probing

Idea:

• If h(x) is occupied, try the subsequent position:

 $h(x,i) = (h(x) + i) \mod m$

for $i = 0, \ldots, m-1$

• Example:

Insert the following keys

$$- x_1, h(x_1) = 3$$

- x_2, h(x_2) = 5
x_1 h(x_2) = 2

$$-x_3, h(x_3) = 3$$

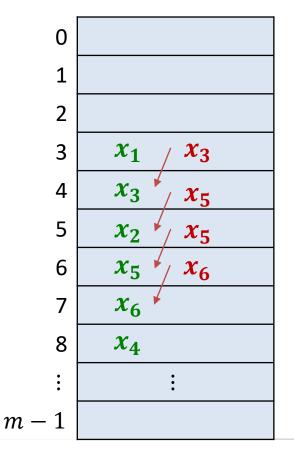
 $-x_3 + h(x_3) = 8$

$$-x_4, h(x_4) = 0$$

- x₅, h(x₅) = 4

$$-x_6, h(x_6) = 6$$

. .



ZW

Linear Probing

Advantages:

- very simple to implement
- all array positions are considered as alternatives
- good cache locality

Disadvantages:

- As soon as there are collisions, we get clusters.
- Clusters grow if hashing into one of the positions of a cluster.
- Clusters of size k in each step grow with probability (k + 2)/m
- The larger the clusters, the faster they grow!!

Fabian Kuhn

Idea:

• Choose sequence that does not lead to clusters:

 $h(x,i) = (h(x) + c_1i + c_2i^2) \mod m$

for i = 0, ..., m - 1

Advantages:

- does not create clusters of consecutive entries
- covers all *m* positions if parameters are chosen carefully

Disadvantages: $h(x) = h(y) \implies h(x,i) = h(y,i)$

- can still lead to some kind of clusters
- problem: first hash values determines the whole sequence!
- Asymptotically at best as good as hashing with separate chaining

Z

Double Hashing

Idea: Use two hash functions

$$h(x,i) = (h_1(x) + i \cdot h_2(x)) \mod m$$

Advantages:

- If m is a prime number, all m positions are covered
- Probing function depends on x in two ways
- Avoids drawbacks of linear and quadratic probing
- Probability that two keys x and x' generate the same sequence of positions:

$$h_1(x) = h_1(x') \wedge h_2(x) = h_2(x') \implies \text{prob} = \frac{1}{m^2}$$

• Works well in practice!

Open Addressing: Find Operation

Open Adressing:

Key x can be at the following positions:

$$h(x, 0), h(x, 1), h(x, 2), \dots, h(x, m - 1)$$

Find Operation? hash table i = 0while i < m and H[h(x,i)] != None and H[h(x,i)].key != x: i += 1 if i < m: return (H[h(x,i)].key == x)

When inserting x, x is inserted at position H[h(x, i)] if H[h(x, j)] is occupied for all j < i.



Open Addressing: Delete Operation

Open Addressing:

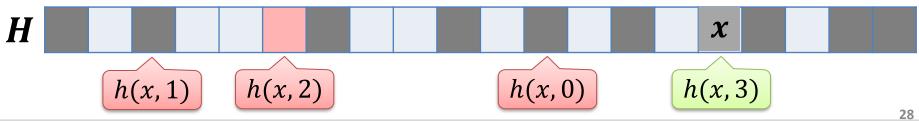
Key x can be at the following positions:

 $h(x, 0), h(x, 1), h(x, 2), \dots, h(x, m-1)$

Delete Operation

```
i = 0
while i < m and H[h(x,i)] != None and H[h(x,i)].key != x:
  i += 1
if i < m and H[h(x,i)].key == x:
 H[h(x,i)] = deleted
```

When inserting x, x is inserted at position H[h(x, i)] if H[h(x, j)] is occupied for all j < i.



Algorithms and Data Structures

Open Addressing: Find Operation

Open Addressing:

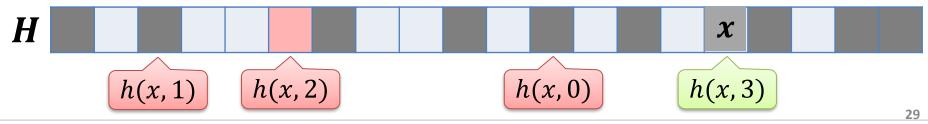
• Key x can be at the following positions:

 $h(x, 0), h(x, 1), h(x, 2), \dots, h(x, m - 1)$

Find Operation

```
i = 0
while i < m and H[h(x,i)] != None and H[h(x,i)].key != x:
    i += 1
if i < m:
    return (H[h(x,i)].key == x)</pre>
```

When inserting x, x is inserted at position H[h(x, i)] if H[h(x, j)] is occupied for all j < i.



Open Addressing:

- All keys / values are stored directly in the array
 - deleted entries have to be marked
- No lists necessary
 - avoids the required overhead...
- Only fast if load

$$\alpha = \frac{n}{m}$$

is not too large...

- but then, it is faster in practice than separate chaining...
- $\alpha > 1$ is impossible!
 - because there are only *m* positions available

So far, we have seen:

efficient method to implement a dictionary

- All operations typically have runtime O(1)
 - If the hash functions are random enough and if they can be evaluated in constant time.
 - The worst-case runtime is somewhat higher, in every application of hash functions, there will be some more expensive operations.

We will see:

- How to choose a good hash function?
- What to do if the hash table becomes too small?
- Hashing can be implemented such that the find cost is O(1) in every case.

Hashing in Python

Hash tables (dictionary):

https://docs.python.org/2/library/stdtypes.html#mapping-types-dict

- Generate new table:
- Insert (*key,value*) pair:
- Find *key*:

• Delete *key*:

 $table = \{\}$

table.update({key : value})
key in table
table.get(key)
table.get(key, default_value)
del table[key]
table.pop(key, default_value)

Hashing in Java

Java class HashMap:

- Create new hash table (keys of type K, values of type V)
 HashMap<K,V> table = new HashMap<K,V>();
- Insert (*key,value*) pair (*key* of type *K*, *value* of type *V*) table.put(*key, value*)
- Find *key*

table.get(key)
table.containsKey(key)

• Delete *key*

table.remove(key)

• Similar class HashSet: manages only set of keys

Z

There is not one standard class

hash_map:

• Should be available in almost all C++ compilers

http://www.sgi.com/tech/stl/hash_map.html

unordered_map:

• Since C++11 in Standard STL

http://www.cplusplus.com/reference/unordered_map/unordered_map/

Hashing in C++

FREIBURG

C++ classes hash_map / unordered_ map:

- Neue Hashtab. erzeugen (Schlüssel vom Typ K, Werte vom Typ V) unordered_map<K,V> table;
- Einfügen von (key,value)-Paar (key vom Typ K, value vom Typ V) table.insert(key, value)
- Suchen nach key
 table[key] oder table.at(key)
 table.count(key) > 0
- Löschen von key table.erase(key)

Hashing in C++

Attention

- One can use hash_map / unordered_map in C++ like an array
 - The array elements are the keys
- But:

T[key] inserts key, if it is not contained

T.at(key) throws an exception if key is not contained in map.