Algorithms and Data Structures

Lecture 5
Hash Tables 2:
Hash Functions, Universal Hashing,
Rehash, Cuckoo Hashing

Fabian Kuhn

Algorithms and Complexity

Hash Tables

Implements a Dictionary

- Manage a set of (key, value) pairs
- Main operations: insert, find, delete

We have seen so far:

efficient method to implement a dictionary

- All operations typically have running time $O(1)$
- If the hash functions are sufficiently random and can be evaluated in time $O(1)$.
- The worst-case running time is somewhat larger, in every application of hash tables, there will be some more expensive operations.

We will now see:

- How to choose a good hash function?
- What to do if the hash table becomes too small?
- How to implement hashing such that find always requires time O (1).

Good Hash Functions

How to choose a good hash functions?

What properties should a good hash function satisfy?

- In principle, it should have the same properties as a random function:
- Mapping is uniformly random (all hash values appear equally often)
- Mapping of different keys is independent (not clear what exactly this means for a deterministic function)
- Usually, these conditions cannot be verified.
- If something about the distribution of key values is known, this knowledge can potentially be used.
- Luckily there are simple heuristics that work well in practice.

Division Method

Choose hash function as

$$
h(x)=x \bmod m
$$

- All values between 0 and $m-1$ appear equally often
- as far as this is possible

Advantages:

- Very simple function
- A single division \rightarrow can be computed very fast
- Often works quite well, as long as m is chosen carefully...

Remarks:

- If the keys are not integers, one can interpret the bit sequences representing the keys as integers.
- Consecutive keys are mapped to consecutive hash values.

Division Method

Choose hash function as

$$
h(x)=x \bmod m
$$

Choice of Divisor m

- $h(x)$ could be computed particularly fast if $m=2^{k}$
- This is however no good choice because then the hash value is just the last k bits of the key!
- The hash value should depend on all the bits.
- The best is to choose m as a prime number.
- A prime number m for which $m=2^{k}-1$ is also not ideal.
- Best: prime m that is not too close to a power of 2 .

Multiplication Method

Choose hash function as
$0 \leq A x-\lfloor A x\rfloor<1$

$$
h(x)=\lfloor m \cdot(A x-\lfloor A x\rfloor)\rfloor
$$

- A is a constant between 0 and 1

Remarks

- Here, one can choose $m=2^{k}$ (for an integer k)
- If integers are values 0 to $2^{w}-1$, one typically picks an integer $s \in\left\{1, \ldots, 2^{w}-1\right\}$ and defines $A=s \cdot 2^{-w}$

$$
\begin{aligned}
& w \text { bits } \\
& A=\frac{s}{2^{w}} \\
& A \cdot x=\underbrace{\square}_{=\lfloor A x\rfloor}, \underbrace{\leftarrow K \text { bits } \rightarrow}_{=A x-\lfloor A x\rfloor}
\end{aligned}
$$

Multiplication Method

Choose hash function as

$$
h(x)=\lfloor m \cdot(A x-\lfloor A x\rfloor)\rfloor
$$

- A is a constant between 0 and 1

Remarks

- Here, one can choose $m=2^{k}$ (for an integer k)
- If integers are values 0 to $2^{w}-1$, one typically picks an integer $s \in\left\{1, \ldots, 2^{w}-1\right\}$ and defines $A=s \cdot 2^{-w}$
- In principle every A works, in [Knuth; The Art of Comp. Progr. Vol. 3] it is suggested to use

$$
A \approx \frac{\sqrt{5}-1}{2}=0.6180339887 \ldots
$$

Random Hash Functions

If h is chosen randomly among all possible hash functions:

$$
\forall x_{1}, x_{2}: \operatorname{Pr}\left(h\left(x_{1}\right)=h\left(x_{2}\right)\right)=\frac{1}{m}
$$

Problem:

and many other good properties ...

- Such a function cannot be represented and implemented efficiently.
- One essentially needs a table with an entry for each possible key

Idea:

- Choose a function at random from a smaller space
- E.g., use the multiplication method $h(x)=\lfloor m \cdot(A x-\lfloor A x\rfloor)\rfloor$ with a random parameter A
- Not quite as good as a uniformly random hash function, but if it is done correctly, the ideas works \rightarrow universal hashing

Universal Hashing : Idea

Hash functions: $\boldsymbol{h}: \boldsymbol{\mathcal { S }} \rightarrow\{\mathbf{0}, \ldots, \boldsymbol{m}-\mathbf{1}\}$

Key Space \boldsymbol{S}
 $\mathcal{S}=\{0, \ldots, M-1\}$

Space of all possible hash functions

possible hash functions (no. functions: m^{M})
subset \mathcal{H}

Choose \mathcal{H} such that:

- $|\mathcal{H}|$ is not too large and the functions in \mathcal{H} are easy to implement
- A random function h from \mathcal{H} behaves similarly to a uniformly random function
- In particular regarding the collision prob.:

$$
\forall x_{1}, x_{2}: \operatorname{Pr}\left(h\left(x_{1}\right)=h\left(x_{2}\right)\right) \approx \frac{1}{m}
$$

Universal Hashing : Definition

Definition:

- Let \mathcal{S} be the set of possible keys and m be the size of the hash table
- Let \mathcal{H} be a set of hash functions $\mathcal{S} \rightarrow\{0, \ldots, m-1\}$

The set \mathcal{H} is called c-universal if

$$
\forall x, y \in \mathcal{S}: x \neq y \Rightarrow|\{h \in \mathcal{H}: h(x)=h(y)\}| \leq c \cdot \frac{|\mathcal{H}|}{m}
$$

- With other words, if h is chosen at random from \mathcal{H}, we have

$$
\forall x, y \in S: x \neq y \Rightarrow \operatorname{Pr}(h(x)=h(y)) \leq \frac{c}{m}
$$

- Remark:

The set \mathcal{H} of all m^{M} possible hash functions is 1 -universal.

Universal Hashing : List Lengths

Theorem:

- Let \mathcal{H} be a c-universal set of hash functions $\mathcal{S} \rightarrow\{0, \ldots, m-1\}$
- Let $X \subset \mathcal{S}$ be an arbitrary set of keys
- Let $h \in \mathcal{H}$ be a random hash function from the set \mathcal{H}
- For a given $x \in X$, let

$$
B_{x}:=\{y \in X: h(y)=h(x)\}
$$

- In expectation, B_{x} has size $<1+c \cdot \frac{|X|}{m}$

Therefore:

- In expectation, all lists are short!

Universal Hashing : Example I

The set \mathcal{H} is called c-universal if

$$
\forall x, y \in \mathcal{S}: x \neq y \Rightarrow|\{h \in \mathcal{H}: h(x)=h(y)\}| \leq c \cdot \frac{|\mathcal{H}|}{m}
$$

Negative Example:

- Parametrized variant of the division method

$$
\mathcal{H}=\{h: x \rightarrow a \cdot x \bmod m \text { for } a \in\{1, \ldots, M-1\}\}
$$

- Counterexample: choose an arbitrary x and choose $y=x+m$
$-h(x)=a \cdot x \bmod m$
$-h(y)=a \cdot(x+m) \bmod m=(a \cdot x+a \cdot m) \bmod m=a \cdot x \bmod m$

Universal Hashing : Example II

The set \mathcal{H} is called c-universal if

$$
\forall x, y \in \mathcal{S}: x \neq y \Longrightarrow|\{h \in \mathcal{H}: h(x)=h(y)\}| \leq c \cdot \frac{|\mathcal{H}|}{m} .
$$

Positive Example 1:

- m arbitrary, p : prime such that $p>M$

$$
\mathcal{H}=\{h: x \rightarrow((a \cdot x+b) \bmod p) \bmod m \text { for } a, b \in \mathcal{S}, a \neq 0\}
$$

- The set is c-universal für $c \approx 1$ if $p \approx M$
- For x, y, we have $h(x)=h(y)$, if for some $i \in \mathbb{Z}$:

$$
\begin{gathered}
(a x+b) \bmod p=(a y+b) \bmod p+i \cdot m \\
a \equiv i \cdot m \cdot(x-y)^{-1}(\bmod p)
\end{gathered}
$$

- For every x and y and for every b, for each possible value of i, there is only one value of a, for which x and y collide.

Universal Hashing : Example III

The set \mathcal{H} is called c-universal if

$$
\forall x, y \in \mathcal{S}: x \neq y \Rightarrow|\{h \in \mathcal{H}: h(x)=h(y)\}| \leq c \cdot \frac{|\mathcal{H}|}{m} .
$$

Positive Example 2:

- m prime, $\boldsymbol{k}=\left\lfloor\log _{m} M\right\rfloor$, parameter $a \in \mathcal{S}=\{0, \ldots, M-1\}$
- Consider parameter a and key x in basis- m representation:

$$
\begin{aligned}
& a=a_{0}+a_{1} \cdot m+a_{2} \cdot m^{2}+\cdots+a_{k} \cdot m^{k} \sqrt{a_{i}, x_{i} \in\{0, \ldots, m-1\}} \\
& x=x_{0}+x_{1} \cdot m+x_{2} \cdot m^{2}+\cdots+x_{k} \cdot m^{k} \\
& \mathcal{H}=\left\{h: x \rightarrow\left(\sum_{i=0}^{k} a_{i} \cdot x_{i}\right) \bmod m \text { for } a_{i} \in\{0, \ldots, m-1\}\right\}
\end{aligned}
$$

- The set \mathcal{H} is 1 -universal

Universal Hashing : Summary

- If the hash function is chosen at random from a universal set of hash functions, the collision probability for two keys x and y is equal as for a random hash function.
- There are simple and efficient constructions of universal sets of hash functions.

One can take this further:

- Pairwise independent set of hash functions

$$
\forall x, y \in \mathcal{S}, \forall a, b \in \mathbb{Z}_{m}: \operatorname{Pr}(h(x)=a \wedge h(y)=b)=\frac{1}{m^{2}}
$$

- A random function from such a set behaves exactly the same as a random function for every pair of keys x, y (not just regarding collisions)
- k-independent set of hash functions
- A random function from such a set behaves exactly the same as a random hash function for every set of k different keys.

Rehash

Remember:

- Load of a hash table: $\alpha=n / m$

What if a hash table becomes too full?

- Open Addressing:
- $\alpha>1$ impossible, for $\alpha \rightarrow 1$ very inefficient
- If one inserts and deletes a lot, the table also becomes inefficient (because of the deleted marks)
- Chaining: Complexity grows linearly with α

What it the chosen hash function behaves badly?

Rehash:

- Create a new, larger hash table, choose a new hash function h^{\prime}.
- Insert all existing (key, value) pairs.

Cost of Rehash

A rehash is expensive!

Cost (time):

- $\Theta(m+n)$: grows linearly in the number of inserted values and in the length of the old hash table
- typically, this is just $\Theta(n)$
- If done correctly, a rehash is rarely necessary:
- good hash function (e.g., from a universal set)
- good choice of table sizes: with each rehash, the table size should be roughtly doubled old size $m \Rightarrow$ new size $\approx 2 m$
- With doubling, one gets constant time per hash table operation on average \rightarrow amortisierte Analyse

Cost of Rehash

Analysis Doubling Strategy

- We make a few simplifying assumptions:
- Up to load α_{0} (e.g., $\alpha_{0}=1 / 2$) all hash table operations cost $\leq c$.
- At load α_{0}, we double the table size: old size m, new size $2 m$, cost $\leq c \cdot m$.
- At the beginning, the table has size $m_{0} \in O(1)$.
- The table size is never decreased...
- How large is the cost for rehashing, compared to the total cost of all other operations?

Cost of Rehash

Overall Cost

- We assume that the table size is $m=m_{0} \cdot 2^{k}$ for $k \geq 1$
- i.e., up to now, we have done $k \geq 1$ rehash steps
- remark: for $k=0$ the rehash cost is still 0 .
- The overall rehash cost is

$$
\leq \sum_{i=0}^{k-1} c \cdot m_{0} \cdot 2^{i}=c \cdot m_{0} \cdot\left(2^{k}-1\right) \leq c \cdot m
$$

- Overall cost for the remaining operations
- For the rehash from size $m / 2$ to size m we had $\geq \alpha_{0} . m / 2$ entries in the table.
- Number of hash table operations (without rehash)

$$
\geq \frac{\alpha_{0}}{2} \cdot m
$$

Cost of Rehash

- The overall rehash cost is

$$
\leq \sum_{i=0}^{k-1} c \cdot m_{0} \cdot 2^{i}=c \cdot m_{0} \cdot\left(2^{k}-1\right) \leq c \cdot m
$$

- Number of hash table operations:

$$
\# \mathrm{OP} \geq \frac{\alpha_{0}}{2} \cdot m
$$

- Average cost per operation

- On average, the cost per operation is constant
- also for worst-case inputs (as long as the simplifying assumptions hold)
- average cost per operation = amortized cost per operation

Amortized Analysis

Algorithm analysis so far:

- worst case, best case, average case

Now additionaly amortized worst case:

- n operations o_{1}, \ldots, o_{n} on some data structure, t_{i} : cost of o_{i}
- Costs can be very different from each other (z.B. $\left.t_{i} \in[1, c \cdot i]\right)$
- Amortized cost per operation

$$
\frac{T}{n}, \quad \text { where } T=\sum_{i=1}^{n} t_{i}
$$

- Amortized cost: Average cost per operation in a worst-case execution
- amortized worst case \neq average case!
- More on this in the algorithm theory lecture

Amortized Analysis Rehash

- If one only increases the table size and assumes that for small load, hash table operations require time $O(1)$, the amortized cost (time) per operation is $O(1)$.
- Analysis also works for a random hash function from a universal set of hash functions (with high probability)
- Then, for small load, hash table operations with high probability have amortized cost $O(1)$.
- Analysis can be adapted for rehashs for decreasing the table size
- And also for cases where a rehash is necessary because of a lot of delete operations (and the resulting deleted marks)
- In a similar way, one can build dynamic-size arrays from fixed-size arrays
- All array operations have $O(1)$ amortized running time.
- ADT only allows increasing/decreasing size in 1-element steps at the end.

Cuckoo Hashing Idea

Hashing Summary:

- Efficient dictionary data structure
- Operations in expectation (usually) require O (1) time.
- Hashing with separate chaining can be implemented such that insert always has running time $O(1)$.
- Can we also guarantee running time $\boldsymbol{O}(1)$ for find?
- if at the same time insert is only $O(1)$ time in expectation...

Cuckoo Hashing Idea:

- Open addressing
- At each table position, there is only space for one entry.
- Two hash functions h_{1} and h_{2}
- A key x is always stored at position $h_{1}(x)$ or $h_{2}(x)$
- If both positions are occupied when inserting x, one has to reorganize...

Cuckoo Hashing

Inserting a key x :

- x is always inserted at position $h_{1}(x)$
- If there already is another key y at position $h_{1}(x)$:
- Remove y from this position (thus the name cuckoo hashing)
- y has to be inserted at its alternative position (if it was at pos. $h_{1}(y)$, it has to go to pos. $h_{2}(y)$, otherwise to pos. $h_{1}(y)$)
- If there is already a key z at this position, remove z from there and place it at its alternative position
- And so on ...

Find / Delete:

- If x is in the table, it is at position $h_{1}(x)$ or $h_{2}(x)$
- For delete: Mark table entry as empty!
- Both operations always require time $O(1)$!

Cuckoo Hashing Example

Table size: $m=5$
Hash functions: $h_{1}(x)=x \bmod 5, h_{2}(x)=2 x-1 \bmod 5$ Insert keys 17, 28, 7, 10, 20 :

Cuckoo Hashing : Cycles

- When inserting, we can get a cycle
- x replaces y_{1}
- y_{1} replaces y_{2}
- y_{2} replaces y_{3}
- ...
- $y_{\ell-1}$ replaces y_{ℓ}
- y_{ℓ} replaces x or y_{i} for some $i<\ell$
- Or it can happen that for some key $h_{1}\left(y_{i}\right)=h_{2}\left(y_{i}\right)$
- If this happens, we can also try the alternative position for x, but there the same can happen again...
- In this case, one chooses new hash functions and performs a rehash (usually with a larger table).

Cuckoo Hashing : Hash Functions

How to choose the two hash functions?

- They should be as "independent" as possible...
- Few keys x for which $h_{1}(x)=h_{2}(x)$
- A good choice:
two independent, random functions from a universal set
- Then, one can show that cycles only occur rarely as long as $n \leq m / 2$.
- As soon as the table is half full ($n \geq m / 2$), one should do a rehash and switch to a table of twice the size.

Cuckoo Hashing : Running Time

Find / Delete:

- Always running time $O(1)$
- One only has to inspect the two positions $h_{1}(x)$ and $h_{2}(x)$.
- This is the big advantage of cuckoo hashing.

Insert:

- One can show that on average, it also requires time $O(1)$
- If the table is not filled to more than half its size
- Doubling the table size when rehashing leads to constant average running time per operation!

Hashing Summary

Efficient method to implement a dictionary

Handling of Collisions

- Hashing with separate chaining
- simple, very flexible, with 2 hash functions, the list lengths can be restricted to $O(\log \log n)$ with high probability
- Open Addressing
- different possibilities, more efficient in practice
- possible to implement such that find has worst-case time O (1).
- load $\alpha>1$ impossible, if α becomes large, one has to do a rehash

Hash Functions

- There are simple strategies to obtain good hash functions.
- In practice, often, a single fixed hash function is used.

Rehash

- If a hash table becomes too full, one has to reset the whole table
- This can be done such that the average running time per operation is still constant.

