Algorithms and Data Structures

Lecture 6

Binary Search Trees I

Fabian Kuhn Algorithms and Complexity

Abstract Data Types : Dictionary

Dictionary: (also: maps, associative arrays)

 Manages a set of elements, where each element is represented by a unique key

Operations

- create : creates a new empty dictionary
- *D.insert(key, value)* : inserts a new (key, value)-pair
 - If there already exists an entry for *key*, the old entry is replaced
- *D.find(key)* : returns entry for the given *key*
 - If such an entry exists (otherwise a default value is returned)
- *D.delete(key)* : deletes the entry for the given *key*

Can be implemented with hash tables in (amortized) constant time!

Dictionary:

Additional possible operations:

- *D.minimum()* : returns smallest *key* in the data struture
- *D.maximum()* : returns largest *key* in the data structure
- D.successor(key) : returns next larger key
- *D.predecessor(key)* : returns next smaller key
- *D.getRange(k1, k2)* : returns all entries with keys in the interval [k1,k2]

These operations cannot be implemented efficiently with a hash table.

Search for key 19:

2	3	4	6	9	12	15	16	17	18	19	20	24	27	29

UNI FREIBURG

Binary Search Trees : Idea

• Use the search tree of the binary search as data structure

BURG

NUN

Binary Search Tree : Elements

Implementation: in the same way as for list elements

Binary Search Trees

• Binary search trees do not always need to be nice and symmetric...

N N N N

Find in a Binary Search Tree

Search for key *x*

- Use binary search
 - That's way it's called a binary search tree ...

Running time: *O*(depth of tree)

```
current = root
while current is not None and current.key != x:
    if current.key > x:
        current = current.left
    else:
        current = current.right
```

At the end:

- Key x not in the tree : current == None
- Key x found : current.key == x

(15)

18)

20

6

4

Suche Minimum / Maximum

Find smallest element in a binary search tree

• All smaller elements are always in the left subtree.

current = root while current.left is not None: current = current.left

Search for Successor

Ordering in tree: *A* < *z* < *B* < *y* < *C* < *x* < *D* < *w* < *E*

SH

Search for Successor

Find successor of a node u (assumption: $u \neq$ None)


```
# find first node towards root s.t. u is in left subtree
current = u
parent = current.parent
while parent is not None and current == parent.right:
    current = parent
    parent = current.parent
```

return parent

Running time: *O*(depth of tree)

15

Search for Predecessor

Find predecessor of a node u (assumption: $u \neq$ None)

else

```
# find first node towards root s.t. u is in right subtree
current = u
parent = current.parent
while parent is not None and current == parent.left:
    current = parent
    parent = current.parent
```

return parent

Running time: *O*(depth of tree)

15

Insert keys 5, 1, 14, 6.5, 19 ...

Running time: *O*(depth of tree)

UNI FREIBURG

Inserting a key x with value a right child value parnet left child kev if root is None: root = **new** TreeElement(x, a, None, None, None) else: current = root; parent = None while current is not None and current.key != x: parent = current binary search if x < current.key:</pre> current = current.left else: current = current.right **if** current **is** None: (key x is not contained in tree) if x < parent.key:</pre> parent.left = new TreeElement(x, a, parent, None, None) else: parent.right = new TreeElement(x, a, parent, None, None) else: current.value = a (key x is already contained, replace value)

Deleting a Key I

Delete key *x*, simple cases:

- Key x is in a leaf node u of the tree
 - leaf = node has no children

• Node with key *x* has only 1 child

Deleting a Key II

Delete key *x*, node has two children:

• Delete key 6:

UNI FREIBURG

Deleting a Key III

Delete key *x*, node has two children:

- Predecessor is largest key in left subtree.
 - Predecessor has no right child.
- Successor is smallest key in right subtree.
 - Successor has no left child.
- Write key and data of precedessor (or alternatively successor) to the node of key *x*
- Delete predecessor / successor node
 - Predecessor / successor is either a leaf or it has only one child.

Deleting a Key IV

Delete key *x*:

- 1. Find node u with u.key = x
 - as usual, by using binary search
- 2. If *u* does not have 2 children, delete node *u*
 - Assumption: v is parent of u, u is left child of v (other case is symmetric)
 - If u is a leaf, we do v.left = None
 - If u has one child w, we do v.left = w
- 3. If u has two children, determine predecessor node v
 - also works with successor node
- 4. Set u.key = v.key and u.data = v.data
- 5. Delete node v (in the same way as deleting u above)
 - Node v has at most 1 child!

Running time: *O*(depth of tree)

Running Times Binary Search Tree

The operations *find, min, max, predecessor, successor, insert, delete* all have **running time** *O*(depth of tree).

What is the depth of a binary search tree?

Sorting with a Binary Search Tree

- 1. Insert all element into a binary search tree
- 2. Read out the elements in sorted order
 - Simplest solution: always find and delete minimum
 - Or better: find minimum and afterwards n 1 times successor

Better solution: reading out all elements:

- Recursively:
 - 1. Read out left subtree (recursively)
 - 2. Read out root
 - 3. Read out right subtree (recursively)

Running time for depth $O(\log n)$:

- Insert: $O(n \cdot \log n)$
- Read out: O(n)

15

20

Reading Out a Part of the Elements

Given: keys x_{\min} and x_{\max} ($x_{\min} \le x_{\max}$)

Goal: Output **all keys** x with $x_{\min} \le x \le x_{\max}$.

- Assumption: #keys in range $[x_{\min}, x_{\max}]$ is equal to k
- **Running time:** certainly O(n) and certainly also $\Omega(k + \text{depth})$

N

Reading Out a Part of the Elements

Given: keys x_{\min} and x_{\max} ($x_{\min} \le x_{\max}$)

Goal: Output all keys x with $x_{\min} \le x \le x_{\max}$.

Fabian Kuhn

SH

Traversal of a Binary Search Tree

Goal: visit all nodes of a binary search tree once.

NH

Traversal of a Binary Search Tree

Depth First Search / DFS Traversal

- Pre-Order: 15, 6, 3, 2, 4, 7, 13, 9, 18, 17, 20
- In-Order: 2, 3, 4, 6, 7, 9, 13, 15, 17, 18, 20

Post-Order: 2, 4, 3, 9, 13, 7, 6, 17, 20, 18, 15

Breadth First Search / BFS Traversal Level-Order: 15, 6, 18, 3, 7, 17, 20, 2, 4, 13, 9

Does not work in the same way
 ⇒ we will afterwards look at this

- recursively

DFS Traversal

preorder(node):

if node is not None:
 visit(node)
 preorder(node.left)
 preorder(node.right)

inorder(node):

if node is not None:
 inorder(node.left)
 visit(node)
 inorder(node.right)

postorder(node):

if node is not None:
 postorder(node.left)
 postorder(node.right)
 visit(node)

Zä

BFS Traversal

• Does not work recursively as for DFS traversal

• Observations:

- The root of a subtree is always visited before its children
- If a node u is visited before node v, then also the children of node u are visited before the children of node v.
- Idea: Use a FIFO queue: when visiting u, then the children of u are inserted into the FIFO queue.

BFS Traversal

• Does not work recursively as for DFS traversal

FIFO Queue:

NH

BFS Traversal

- Does not work recursively as for DFS traversal
- Solution with a FIFO queue:
 - When visiting a node, insert its children into a FIFO queue

```
BFS-Traversal:
```

```
Q = new Queue()
Q.enqueue(root)
while not Q.empty():
    node = Q.dequeue()
    visit(node)
    if node.left is not None:
        Q.enqueue(node.left)
    if node.right is not None:
        Q.enqueue(node.right)
```

DFS Traversal:

- Each node is visited exactly once
- Time cost per node: O(1)
- Overall time for DFS traversal: O(n)

BFS Traversal:

- Each node is visited exactly once
 - Cost per node is linear in the number of children, i.e., O(1) for binary trees
 - Each node is inserted into the FIFO queue exactly once
- Cost per node: O(1)
- **Overall time** for BFS traversal: **0**(**n**)

In-order traversal:

- Visits all elements of a binary search tree in sorted order
- Sorting:
 - 1. Insert all elements
 - 2. In-order traversal
- Observation: Order only depends on the set of elements (keys) and not on the structure of the tree.

Zä

Pre-order traversal:

- From a pre-order traversal sequence, the tree can be reconstructed uniquely (and efficiently).
- Useful to store a tree, e.g., in a file

Z

Post-order traversal:

- Deleting a whole binary search tree
- First, one has to free the memory of the substrees before freeing the memory of the root node.

```
delete-tree(node)
    if (node != None)
        delete-tree(node.left)
        delete-tree(node.right)
        delete node
```

Efficiency of a Binary Search Tree

Worst case running time of the operations *find, min, max, predecessor, successor, insert, delete*: *O*(depth of tree)

- In the **best case**, the depth is $\log_2 n$
 - Definition depth: length of longest path from the root to a leaf
- In the **worst case**, the depth is n-1
- In the average case, the depth is O(log n)
 - Average case here means a random insertion order

Next lecture: How can we guarantee that the depth of a binary search tree is always $O(\log n)$?

Zä