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Node set 𝑽, typically 𝑛 ≔ |𝑉| (nodes are also called vertices)

Edge set 𝑬, typically 𝑚 ≔ 𝐸

• undirected graph: 𝐸 ⊆ 𝑢, 𝑣 ∶ 𝑢, 𝑣 ∈ 𝑉

• directed graph: 𝐸 ⊆ 𝑉 × 𝑉

Examples:

2

Graphs

1

2

3

5
4

1

2

3

5
4

𝑉 = 1, 2, 3, 4, 5

𝐸 = 1,2 , 1,4 , 1,5 , 2,3 , 3,4 , 3,5 , {4,5}

𝑉 = 1, 2, 3, 4, 5
𝐸 = 1,2 , 1,5 , 2,3 , 3,4 , 3,4 , 3,5 , 4,1 , (5,4)
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Graph 𝑮 = (𝑽, 𝑬) undirected:

• Degree of node 𝑢 ∈ 𝑉: Number of edges (neighbors) of 𝑢

deg 𝑢 ≔ 𝑢, 𝑣 ∶ 𝑢, 𝑣 ∈ 𝐸

Graph 𝑮 = (𝑽, 𝑬) directed:

• In-degree of node 𝑢 ∈ 𝑉: Number of incoming edges

deg𝑖𝑛(𝑢) ≔ 𝑣, 𝑢 ∶ 𝑣, 𝑢 ∈ 𝐸

• Out-degree of node 𝑢 ∈ 𝑉: Number of outgoing edges

deg𝑜𝑢𝑡(𝑢) ≔ 𝑢, 𝑣 ∶ 𝑢, 𝑣 ∈ 𝐸
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Node Degrees
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Paths in a graph 𝑮 = (𝑽, 𝑬)

• Path in 𝐺 : a sequence 𝑢1, 𝑢2, … , 𝑢𝑘 ∈ 𝑉 with 𝑢𝑖 ≠ 𝑢𝑗 (if 𝑖 ≠ 𝑗)

– directed graph: 𝑢𝑖 , 𝑢𝑖+1 ∈ 𝐸 for all 𝑖 ∈ {1, … , 𝑘 − 1}

– undirected graph: 𝑢𝑖 , 𝑢𝑖+1 ∈ 𝐸 for all 𝑖 ∈ {1, … , 𝑘 − 1}

Length of a path

• Number of edges on the path

• With edge weights: sum of all edge weights
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Paths

𝑢1 𝑢2 𝑢3 𝑢7𝑢4 𝑢5 𝑢6

𝑢1 𝑢2 𝑢3 𝑢7𝑢4 𝑢5 𝑢6

Path, directed:

Path, undirected:

Length of path: 𝟔
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Paths in a graph 𝑮 = (𝑽, 𝑬)

• Path in 𝐺 : a sequence 𝑢1, 𝑢2, … , 𝑢𝑘 ∈ 𝑉 with 𝑢𝑖 ≠ 𝑢𝑗 (if 𝑖 ≠ 𝑗)

– directed graph: 𝑢𝑖 , 𝑢𝑖+1 ∈ 𝐸 for all 𝑖 ∈ {1, … , 𝑘 − 1}

– undirected graph: 𝑢𝑖 , 𝑢𝑖+1 ∈ 𝐸 for all 𝑖 ∈ {1, … , 𝑘 − 1}

Length of a path

• Number of edges on the path

• With edge weights: sum of all edge weights

Shortest path between nodes 𝑢 and 𝑣

• Path 𝑢,… , 𝑣 of smallest length

• Distance 𝑑𝐺 𝑢, 𝑣 : Length of a shortest path between 𝑢 and 𝑣

Diameter 𝑫 ≔ 𝐦𝐚𝐱
𝒖,𝒗∈𝑽

𝒅𝑮(𝒖, 𝒗)

• Length of the longest shortest path
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Pfade
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Two classic methods to represent a graph in a computer

• Adjacency matrix: Space usage Θ 𝑉 2 = Θ 𝑛2

• Adjacency lists: Space usage Θ 𝑉 + 𝐸 = Θ 𝑛 +𝑚 = 𝑂 𝑛2

Example:
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Representation of Graphs
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1 0 1 0 1 0

2 1 0 1 1 0

3 0 1 0 0 1

4 1 1 0 0 1

5 0 0 1 1 0
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2 4 None

1 4 3 None

2 5 None

3 4 None

5 2 1 None

adjacency matrix adjacency lists
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Details:

• With edge weights, matrix entries are weightes (instead of 0/1) 
(implicitly: weight 0 = edge does not exist)

• Directed graphs: one entry per directed edge
– Edge from 𝑖 to 𝑗: entry in row 𝑖 and column 𝑗

• Undirected graphs: two entries per edge
– Matrix in this case is symmetric

Properties Adjacency Matrix:

• Memory-efficient if 𝐸 = 𝑚 ∈ Θ 𝑉 2 = Θ 𝑛2

– In particular for unweighted graphs: only one bit per matrix entry

• Not memory-efficient for sparse graphs (𝑚 ∈ 𝑜 𝑛2 )

• For certain algorithms, the “right” data structure

• “Edge between 𝑢 and 𝑣” can be answered in time 𝑂 1

7

Adjacency Matrix
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Structure

• An array with all the nodes

• Entries in this node array:
– Linked lists with all edges of the corresponding nodes

Properties

• Memory-efficient for sparse graphs

• Memory-usage always (almost) asymptotically optimal
– but for dense graphs, still much worse…

– To be precise: one actually requires 𝑂 log𝑛 bits per node

• Queries for specific edges not very efficient
– If necessary, one can use an additional data structure (e.g., a hash table)

• For many algorithms, the “right” data structure

• E.g., for depth first search and breadth first search
8

Adjacency Lists
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Examples from [CLRS]:
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Examples
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Graph Traversal (also: graph exploration) informally

• Given: a graph 𝐺 = 𝑉, 𝐸 and a node 𝑠 ∈ 𝑉, visit all nodes that 
are reachable from 𝑠 in a “systematic” way.

• We have already seen this for binary trees.

• As for trees, there are two basic approaches

• Breadth First Search (BFS)
– first “to the breadth” (nodes closer to 𝑠 first)

• Depth First Search (DFS)
– first “to the depth” (visit everything that can be reached from some 

neighbor of the current node, before going to the next neighbor)

• Graph traversal is important as it is often used as a subroutine in 
other algorithms.
– E.g., to compute the connected components of a graph

– We will see a few examples…

10

Graph Traversal
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Traversal of a Binary Search Tree
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Goal: visit all nodes of a binary search tree once

In-Order (DFS): Pre-Order (DFS):

Post-Order (DFS): Level-Order (BFS):
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• Solution with a FIFO queue:
– If a node is visited, its children are inserted into the queue.

BFS-Traversal:

Q = new Queue()

Q.enqueue(root)

while not Q.empty() do

node = Q.dequeue()

visit(node)

if node.left != null 

Q.enqueue(node.left)

if node.right != null

Q.enqueue(node.right)

12

BFS Traversal
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Differences binary tree 𝑻⇔ general graph 𝑮

• Graph 𝐺 can contain cycles

• In 𝑇, we have a root and every node know the direction towards 
the root.
– Such trees are very often also called “rooted trees”

BFS Traversal in graph 𝑮 (start at node 𝒔 ∈ 𝑽)

• Cycles: mark nodes that we have already seen

• Mark node 𝑠, then insert 𝑠 into the queue

• As before, take first node 𝑢 from the queue:
– visit node 𝒖

– Go through the neighbors 𝑣 of 𝑢
If 𝑣 is not marked, mark 𝑣 and insert 𝑣 into the queue
If 𝑣 is marked, there is nothing to be done

13

BFS Traversal of General Graphs
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• At the beginning 𝑣.marked is set to 𝐟𝐚𝐥𝐬𝐞 for all nodes 𝑣

BFS-Traversal(s):

for all u in V: u.marked = false;

Q = new Queue()

s.marked = true

Q.enqueue(s)

while not Q.empty() do

u = Q.dequeue()

visit(u)

for v in u.neighbors do

if not v.marked then

v.marked = true;

Q.enqueue(v)

14

BFS Traversal of General Graphs



Algorithms and Data StructuresFabian Kuhn

876 54 32 9 1
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BFS Traversal Exmaple
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BFS spanning tree
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In the following, we label nodes as follows

• white nodes: Knoten, welche der Alg. noch nicht gesehen hat

• gray (before: blue) nodes: marked nodes
– Nodes become gray when they are inserted into the queue.

– Nodes are gray, as long as they are in the queue.

• black (before: red) nodes: visited nodes
– Nodes become black when they are removed from the queue.

16

Analysis BFS Traversal
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The running time of a BFS traversal is 𝑶(𝒏 +𝒎).
– Assumption: graph given as adjacency lists

• If the graph is given by an adjacency matrix, the running time is Θ 𝑛2 .

– white nodes: nodes that the algorithm has not seen yet

– gray (before: blue) nodes: marked nodes

– black (before: red) nodes: visited nodes

• Every node is inserted at most once into the queue.
– In total, there are therefore 𝑂 𝑛 queue operations.

• If node 𝑣 gets removed from the queue, the algorithm looks at all 
its nighbors.
– Every directed edge is considered once.

– Adjacency lists: time cost per node = 𝑂 #neighbors

• One has to go through the neighbor list once.

– Adjacency matrix: time cost per node = 𝑂 𝑛

• One has to go through a whole row of the matrix.
17

Analysis BFS Traversal
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Tree:

• A connected, undirected graph without cycles
– potentially also a directed graph, but then the graph must not have cycles, 

even when ignoring the directions.

Spanning Tree of a Graph 𝑮:

• A subgraph 𝑇 such that 𝑇 is a tree containing all nodes of 𝐺
– Subgraph: Subset of the nodes and edges of 𝐺 such that they together 

define a graph.

18

Trees, Spanning Trees
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BFS Tree
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If 𝑮 is directed: all nodes are reachable from 𝒔

In a BFS traversal, we can construct a spanning tree as follows
(if 𝐺 is connected):

• Every node 𝑢 stores, from which node 𝑣 it was marked

• Node 𝑣 then becomes the parent node of 𝑢
– Because every node is marked exactly once, the parent of each node is

defined in a unique way, 𝑠 is the root and has no parent.
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• We additionaly store the distance from 𝑠 in the tree.

BFS-Tree(s):

Q = new Queue();
for all u in V: u.marked = false;
s.marked = true;
s.parent = NULL;
s.d = 0
Q.enqueue(s)
while not Q.empty() do

u = Q.dequeue()
visit(u)
for v in u.neighbors do

if not v.marked then
v.marked = true;

v.parent = u;

v.d = u.d + 1;            

Q.enqueue(v)

20

BFS Tree: Pseudocode

𝑠

𝑢

𝑣

u.d

v.d = u.d + 1
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In the BFS tree of an unweighted graph, the distance from the root 𝒔
to each node 𝒖 is equal to 𝒅𝑮 𝒔, 𝒖 .

• Tree distance from the root: 𝑑𝑇 𝑠, 𝑢 = 𝑢. 𝑑

• We therefore need to show that 𝑢. 𝑑 = 𝑑𝐺 𝑠, 𝑢

• It definitely holds that 𝒖. 𝒅 ≥ 𝒅𝑮 𝒔, 𝒖
– Because 𝑢. 𝑑 = 𝑑𝑇 𝑠, 𝑢 , this is equivalent to 𝑑𝑇 𝑠, 𝑢 ≥ 𝑑𝐺 𝑠, 𝑢

– This of course holde because every path in 𝑇 is also a path in 𝐺, the distance 
in 𝑇 can therefore not be smaller than the distance in 𝐺.

21

Analysis BFS Traversal
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Lemma: Assume that during BFS traversal, the state of the queue is
𝑄 = 𝑣1, 𝑣2, … , 𝑣𝑟 𝑣1: head, 𝑣𝑟: tail

Then,  𝑣𝑟 . 𝑑 ≤ 𝑣1. 𝑑 + 1 and 𝑣𝑖 . 𝑑 ≤ 𝑣𝑖+1. 𝑑 (for 𝑖 = 1,… , 𝑟 − 1)

Proof: By induction on the queue operations

• Base: At the beginning, only 𝑠 with 𝑠. 𝑑 = 0 is in the queue.

• Step:
– dequeue operation:  𝑄 = 𝑣1, 𝑣2, … , 𝑣𝑟 ,  𝑣𝑟 . 𝑑 ≤ 𝑣1. 𝑑 + 1 ≤ 𝑣2. 𝑑 + 1

– enqueue operation:  𝒖 , 𝑣1, 𝑣2, … , 𝑣𝑟 , 𝒗

– From the induction hypothesis:

𝒗. 𝒅 ≤ 𝒗𝟏. 𝒅 + 𝟏: 𝑣. 𝑑 = 𝑢. 𝑑 + 1 ≤ 𝑣1. 𝑑 + 1

𝒗𝒓. 𝒅 ≤ 𝒗. 𝒅: 𝑣𝑟 . 𝑑 ≤ 𝑢. 𝑑 + 1 = 𝑣. 𝑑

22

Analysis BFS Traversal

induction hypothesis

𝒖 𝒗

most recently  
deleted node

new node in the 
queue

When 𝑣 is inserted into the 
queue, the last removed node

𝑢 is getting processed
(𝑣 is a neighbor of 𝑢).

⟹ 𝑣. 𝑑 = 𝑢. 𝑑 + 1
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In the BFS tree of an unweighted graph, the distance from the root 𝒔
to each node 𝒖 is equal to 𝒅𝑮 𝒔, 𝒖 .

• Proof by contradiction:
– Assumption: 𝑣 is node with smallest 𝑑𝐺(𝑠, 𝑣) for which 𝒗. 𝒅 > 𝒅𝑮(𝒔, 𝒗)

23

Analysis BFS Traversal

𝑠

𝑢

𝑣 𝑑𝐺 𝑠, 𝑣 = 𝑑𝐺 𝑠, 𝑢 + 1

𝑢. 𝑑 = 𝑑𝐺 𝑠, 𝑢

𝒗. 𝒅 > 𝑑𝐺 𝑠, 𝑣 = 𝑑𝐺 𝑠, 𝑢 + 1 = 𝒖. 𝒅 + 𝟏

Consider dequeue of 𝒖:
• 𝑣 will be considered as neighbor of 𝑢

• 𝑣 is white ⟹𝑣.𝑑 = 𝑢. 𝑑 + 1

• 𝑣 is black ⟹𝑣.𝑑 ≤ 𝑢. 𝑑

• 𝑣 is gray ⟹𝑣 is in the queue
Lemma: 𝑣. 𝑑 ≤ 𝑢. 𝑑 + 1
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Basic idea DFS traversal in 𝑮 (start at node 𝒔 ∈ 𝑽)

• Mark node 𝒗 (at the beginning 𝑣 = 𝑠)

• Visit the neighbors of 𝑣 one after the other recursively

• After all neighbors are visited, visit 𝒗

• Recursively: While visiting the neighbors, visit their neighbors and 
while doing this their neighbors, etc.

• Cycles in G: Only visit nodes that have not been marked

• Corresponds to the post-order traversal in trees.

• The order in which the nodes are marked corresponds to the
pre-order traversal in trees.

24

Depth-First Search in General Graphs
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DFS-Traversal(s):

for all u in V: u.color = white;

DFS-visit(s, NULL)

DFS-visit(u, p):

u.color = gray;

u.parent = p;

for all v in u.neighbors do

if v.color = white

DFS-visit(v, u)

visit node u;

u.color = black;

25

DFS Traversal: Pseusocode
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DFS Traversal: Example 
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In the same way as for a BFS traversal, one can also construct a 
spanning tree when doing a DFS traversal.

The running time of a DFS traversal is 𝑶 𝒏 +𝒎 .

• We color the nodes white, gray, and black as before
– not marked = white, marked = gray, visited = schwarz

• The recursive DFS traversal function is called at most once for 
every node.

• The time to process a node 𝑣 is proportional to the number of
(outgoing) edges of 𝑣

27

DFS Traversal: Analysis
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• The connected components (or simply components) of a graph are 
its connected parts.

Goal: Find all components of a graph.

for u in V do

if not u.marked then

start new component

explore with DFS/BFS starting at u

• The connected components of a graph can be identified in time 
𝑂 𝑛 +𝑚 . (by using a DFS or a BFS traversal)

28

Connected Components
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We define the following two times for each node 𝑣

• 𝑡𝑣,1: time, when 𝑣 is colored gray in the DFS traversal

• 𝑡𝑣,2: time, when 𝑣 is colored black in the DFS traversal

Theorem: In the DFS tree, a node 𝑣 is in the subtree of a node 𝑢, if 

and only if the interval 𝑡𝑣,1, 𝑡𝑣,2 is completely contained in the 

interval 𝑡𝑢,1, 𝑡𝑢,2 .

Example:

29

DFS “Parenthesis” Theorem

f e

a b

d

c𝒔

𝒕𝒂,𝟏 𝒕𝒇,𝟏 𝒕𝒆,𝟏𝒕𝒅,𝟏 𝒕𝒄,𝟏 𝒕𝒄,𝟐𝒕𝒃,𝟏 𝒕𝒃,𝟐𝒕𝒅,𝟐 𝒕𝒆,𝟐 𝒕𝒇,𝟐 𝒕𝒂,𝟐

[ [ [ [ [ ] [ ] ] ] ] ]
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Theorem: In the DFS tree, a node 𝑣 is in the subtree of a node 𝑢, if 

and only if the interval 𝑡𝑣,1, 𝑡𝑣,2 is completely contained in the 

interval 𝑡𝑢,1, 𝑡𝑢,2 .

Why is this useful?

• Improves our understanding of the structure of the
resulting DFS tree

• We need the theorem, e.g., to prove the correctness of the
algorithm for computing a topological sort.

30

DFS “Parenthesis” Theorem



Algorithms and Data StructuresFabian Kuhn

Theorem: In the DFS tree, a node 𝑣 is in the subtree of a node 𝑢, if 

and only if the interval 𝑡𝑣,1, 𝑡𝑣,2 is completely contained in the 

interval 𝑡𝑢,1, 𝑡𝑢,2 .

Proof:

• Gray nodes always form a path that starts at node 𝑠.
– Path starts at 𝑠, currently active node at the end of the path

– New node 𝑤 becomes gray ⟹𝑤 neighbor of active node

– Node becomes black ⟹ active node ends recursion

• Node 𝑣 is in the subtree of u 𝑢 if and only if 𝑢 is part of the path, 
when 𝑣 becomes gray and thus iff 𝑡𝑢,1 < 𝑡𝑣,1 < 𝑡𝑢,2.

• NOde 𝑣 in this case is further to the end in the path than 𝑢 and has 
to become black before node 𝑢, hence 𝑡𝑣,2 < 𝑡𝑢,2

31

DFS “Parenthesis” Theorem

𝒔 𝒘𝒃 𝒄 𝒅 𝒖
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Theorem: In the DFS tree, a node 𝑣 is in the subtree of a node 𝑢, if 

and only if the interval 𝑡𝑣,1, 𝑡𝑣,2 is completely contained in the 

interval 𝑡𝑢,1, 𝑡𝑢,2 .

Implications

• Two intervals are always either disjoint or one of the intervals is 
contained in the other.

• Why “Parenthesis” Theorem?
If for each 𝑡𝑣,1 we write an open parenthesis and for each 𝑡𝑣,2 we 
write a close parenthesis, one gets an expression in which the 
parentheses are nested properly.

• A white node 𝑣, which is discovered in the recursive traversal 
started at 𝑢 becomes black before the recursion gets back to 𝑢.

32

DFS “Parenthesis” Theorem
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Theorem: In a DFS tree, a node 𝑣 is in the subtree of a node 𝑢, if and 
only if immediately before marking node 𝑢, a completely white path 
from 𝑢 to 𝑣 exists.

Proof:

• Proof by contradiction: Assume that there is a node 𝑣 to which 
there is a white path, but that node 𝑣 is not in the subtree of 𝑢.

• Assume that 𝑣 is such a node with the additional property that 
immediately before marking 𝑢, 𝑣 has the shortest white path from 
𝑢 among all such nodes.

33

White Paths

at time 𝑡𝑢,1

𝒔 𝒘𝒖 𝒗
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Tree Edges:

• (𝑢, 𝑣) is a tree edge, if node
𝑣 is discovered from node 𝑢

– When considering 𝑢, 𝑣 , 𝑣 is white

Backward Edges:

• 𝑢, 𝑣 is a backward edge if
𝑣 is a predecessor node of 𝑢

– When considering 𝑢, 𝑣 , 𝑣 is gray

Forward Edges:

• 𝑢, 𝑣 is a forward edges if
𝑣 is a successor node of 𝑢

– When considering 𝑢, 𝑣 , 𝑣 is black

Cross Edges:

• All other edges

– When considering 𝑢, 𝑣 , 𝑣 is black
34

Classification of Edges (in DFS)
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Tree Edge (𝒖, 𝒗):

• Node 𝑣 is “discovered” as white neighbor of 𝑢
– If when considering (𝑢, 𝑣), 𝒗 is white ⟹ 𝒖,𝒗 tree edge

Backward Edge (𝒖, 𝒗):

• Subtree of 𝑢 will be completely visited, before 𝑣 becomes black
– If when considering (𝑢, 𝑣) 𝒗 is gray ⟹ 𝑢, 𝑣 backward edge

Forward Edge (𝒖, 𝒗):

• 𝑣 is in a subtree of 𝑢 that has already been visited completely

– Since 𝑣 is in a subtree of 𝑢, 𝒗 is schwarz and 𝒕𝒗,𝟏 > 𝒕𝒖,𝟏

Cross Edge (𝒖, 𝒗):

• As long as 𝑢 is gray, all newly visited nodes are in the subtree of 𝑢, 
𝑣 was therefore visited before 𝑢: 𝒗 is black and 𝒕𝒗,𝟏 < 𝒕𝒖,𝟏.
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Classification of Edges (in DFS)

𝒖 𝒗

𝒖 𝒗

𝒖 𝒗

𝒖 𝒗

𝒕𝒖,𝟏 < 𝒕𝒗,𝟏 < 𝒕𝒗,𝟐 < 𝒕𝒖,𝟐

𝒕𝒗,𝟏 < 𝒕𝒗,𝟐 < 𝒕𝒖,𝟏 < 𝒕𝒖,𝟐
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• In undirected graphs, every edge 𝑢, 𝑣 is considered twice
(once from 𝑢 and once from 𝑣)

• We classify the edge according to the first consideration.

Theorem: In a DFS traversal in an undirected graph, every edge is 
either a tree edge or a backward edge.

Proof: 

• W.l.o.g., we assume that 𝑢 becomes gray before 𝑣 becomes gray.

• From the theorem about white paths, we know that 𝑣 is visited as 
long as 𝑢 is still gray (𝑣 is in the subtree of 𝑢).

• If the edge 𝑢, 𝑣 is first considered from 𝑢, node 𝑣 is still white
⟹ 𝑢, 𝑣 is a tree edge.

• If the edge 𝑢, 𝑣 is first considered from 𝑣, node 𝑢 is still gray
⟹ 𝑢, 𝑣 is a backward edge.
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DFS – Undirected Graphs
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Theorem: A directed graph has no cycles if and only if during a DFS 
traversal, there are no backward edges.

backward edge ⟹ cycle:

cycle ⟹ backward edge:

37

DFS – Directed Graphs

𝒖

𝒗backward edge
𝑢 must be in the 

subtree of 𝑣.

𝒖

𝒗

𝒖

𝒗 𝑢 can also be a 
child of 𝑣.

assumption: 𝑣 is
the first considered 
node in the cycle .

white path:
𝑢 is in the

subtree of 𝑣.

backward edge Implication:

In directed graphs,
one can test in time
𝑂 𝑛 +𝑚 if the 
graph is acyclic.
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Directed Acyclic Graphs:

• DAG: directed acyclic graph

• E.g., models time dependencies between tasks

• Example: putting on pieces of clothes

Topological sort:

• Sort the nodes of a DAG in such a way that 𝑢 appears before 𝑣 if a 
directed path from 𝑢 to 𝑣 exists.

• In the example: Find a possible dressing order

38

Application: Topological Sort
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Directed Acyclic Graphs:

• represent partial orders
– asymmetric: 𝑎 < 𝑏 ⟹ ¬ 𝑏 < 𝑎

transitive: 𝑎 < 𝑏 ∧ 𝑏 < 𝑐 ⟹ 𝑎 < 𝑐

– partial order: not all pairs need to be comparable

• Example: subset relation for sets

Topological Sort:

• Sort the nodes of a DAG in such a way that 𝑢 appears before 𝑣 if a 
directed path from 𝑢 to 𝑣 exists.

• Extend a partial order to a total order:

∅, 1 , 2 , 3 , 1,2 , 1,3 , 2,3 , {1,2,3}
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Topological Sort: A bit more formally…

∅

{1}

{2}

{3}

{1,2}

{1,3}

{2,3}

{1,2,3}
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Do a DFS …

Observation:

• Nodes without successor are visited first (colored black)

• Visiting order is a reverse topological sort order

40

Topological Sort: Algorithm
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Theorem: The reversed “visit” order (coloring black) of the nodes
in a DFS traversal gives a topological sort of a directed acyclic graph.

Proof:

• We must show that for every edge 𝑢, 𝑣 , node 𝑣 becomes black 
before node 𝑢.

• Case 1: 𝒖 becomes gray before 𝒗:

– Then, 𝑣 is in the subtree of 𝑢 and therefore  𝑡𝑢,1 < 𝑡𝑣,1 < 𝑡𝑢,2.

From the parenthesis theorem, we then also get 𝑡𝑣,2 < 𝑡𝑢,2.

• Case 2: 𝒗 becomes gray before 𝒖:
– 𝑢 can only become gray before 𝑣 becomes black, if 𝑢 is in the subtree of 𝑣. 

Then we would have a directed path from 𝑣 to 𝑢⟹ cycle!
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Topological Sort: Algorithm

𝒖 𝒗

𝒖 𝒗

𝒖 𝒗⟹

𝒖 𝒗⟹
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Strongly Connected Components

• Strongly connected component of a directed graph:
“Maximal subset of nodes s. t. every node can reach every other
node”

• Requires 2 DFS traversals (time = 𝑂 𝑚 + 𝑛 )
– on 𝐺 and on 𝐺𝑇 (all edges reversed)

– 𝐺 and 𝐺𝑇 have the same strongly connected components

• Details, e.g., in [CLRS]
42

DFS Traversal: Further Application

Picture: Wikipedia


