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Node Set 𝑽, typically 𝑛 ≔ |𝑉| (alternatively, node = vertex)

Edge Set 𝑬, typically 𝑚 ≔ 𝐸

• Undirected graph: 𝐸 ⊆ 𝑢, 𝑣 ∶ 𝑢, 𝑣 ∈ 𝑉

• directed graph: 𝐸 ⊆ 𝑉 × 𝑉

Examples:
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𝑉 = 1, 2, 3, 4, 5

𝐸 = 1,2 , 1,4 , 1,5 , 2,3 , 3,4 , 3,5 , {4,5}

𝑉 = 1, 2, 3, 4, 5
𝐸 = 1,2 , 1,5 , 2,3 , 3,4 , 3,4 , 3,5 , 4,1 , (5,4)

In this lecture: only undirected graphs
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• Considered as undirected graphs (with 𝑛 nodes)…

Tree:

• Connected undirected graph without cycles
– A cycle-free not necessarily connected (undirected) graph is called a forest

– Number of edges: 𝑛 − 1 (each edge reduces the no. of components by 1)

Equivalent Definitions:

• minimal connected graph

• maximal cycle-free graph

• a unique path between every pair of nodes

• connected graph with 𝑛 − 1 edges

3

Trees
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Given: Connected, undirected graph 𝐺 = 𝑉, 𝐸

Spanning Tree 𝑻 = 𝑽, 𝑬𝑻 : subgraph (𝐸𝑇 ⊆ 𝐸)

• 𝑇 is a tree that contains all nodes of 𝐺

• Alternatively: 𝑇 is a tree with 𝑛 − 1 edges from 𝐸

4

Spanning Tree

1 2

3 4

5

6

8

7



Algorithms and Data StructuresFabian Kuhn

Given: Connected, undirected graph 𝐺 = 𝑉, 𝐸,𝑤
with edge weights 𝑤 ∶ 𝐸 → ℝ

Minimum Spanning Tree 𝑻 = 𝑽, 𝑬𝑻 :

• A spanning tree with smallest total weight
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Minimum Spanning Tree (MST)
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Goal: Given an undirected, connected graph 𝐺, find a spanning
tree with minimum total weight.

• Minimum Spanning Tree = MST

• A fundamental optimization problem on graphs
– one of many optimization problems on graphs

• Often appears as a subproblem

• MSTs are however also interesting by themselves
– For example in the context of networks

– A minimum spanning tree is the cheapest way of connecting all the nodes of
a network. 

6

Minimum Spanning Trees
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Idea: Start with an empty edge set and add edges step-by-step

until we have a spanning tree.

• In the beginning, we have 𝐴 = ∅

• Afterwards, we always add an edge that preserves the invariant.

• We call an edge for which we can be sure that we can add the

edge to 𝐴 (and preserve the invariant), a safe edge for 𝐴

• How one can find safe edges, we will see…

7

Generic MST Algorithm

Invariant:
At all times, the algorithm has an edge set 𝐴, such that 𝐴 is 
the subset of the edges of a minimum spanning tree.
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Generic MST Algorithm:

𝐴 = ∅

while 𝐴 is not a spanning tree do

Find a safe edge 𝑢, 𝑣 for 𝐴

𝐴 = 𝐴 ∪ 𝑢, 𝑣

return 𝐴

• Invariant is a valid loop invariant

• Invariant + condition for exiting the loop ⟹𝐴 is an MST!

8

Generic MST Algorithm

Invariant:
At all times, the algorithm has an edge set 𝐴, such that 𝐴 is 
the subset of the edges of a minimum spanning tree.
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• Invariant  there is always a safe edge
– 𝐴 is the subset of an MST and can therefore be extended to an MST

• We first need some terminology …

Cut 𝑺, 𝑽 ∖ 𝑺 , 𝑺 ≠ ∅, 𝑺 ≠ 𝑽:

• An edge 𝑢, 𝑣 ∈ 𝐸 is a cut edge w.r.t. 𝑆, 𝑉 ∖ 𝑆 if one node of the 
edge is in 𝑆 and one node of the edge is in 𝑉 ∖ 𝑆.

• We call an edge 𝑢, 𝑣 a light cut edge w.r.t. 𝑆, 𝑉 ∖ 𝑆 if the edge 
has the smallest weight among all cut edges.

𝑽 ∖ 𝑺𝑺

9

How can we find safe edges?
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Assumption:

• 𝐺 = 𝑉, 𝐸,𝑤 is a connected, undir. graph with edge weights 𝑤 𝑒

• 𝐴 is a subset of the edges of an MST

Theorem: Let 𝑆, 𝑉 ∖ 𝑆 be a cut s.t. 𝐴 does not contain any cut edges 
and let 𝑢, 𝑣 , 𝑢 ∈ 𝑆, 𝑣 ∈ 𝑉 ∖ 𝑆 be a light cut edge w.r.t. 𝑆, 𝑉 ∖ 𝑆 . 
Then, 𝑢, 𝑣 is a safe edge for 𝐴.
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Safe Edges
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𝑨

𝑺 𝑽 ∖ 𝑺 𝑨: edge set that is subset of
the edges of an MST.

𝑺, 𝑽 ∖ 𝑺 : cut for which no edge
in 𝐴 is a cut edge.

Light cut edges are safe
edges for 𝐴 and can thus
be added to 𝐴.
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Theorem: A connected (undirected) graph 𝐺 = (𝑉, 𝐸)
with 𝑛 nodes and 𝑛 − 1 edges is a tree.

Proof: By induction on 𝑛

• Induction Base (𝑛 = 1):

• Induction Step (𝑛 − 1 → 𝑛):
– A graph with 𝑛 nodes and 𝑛 − 1 edges has a node of degree ≤ 1

avgdeg 𝐺 =
1

𝑛
⋅ 

𝑣∈𝑉

deg 𝑣 =
2 𝐸

𝑛
=
2𝑛 − 2

𝑛
< 2

– If 𝐺 is connected : ∃𝑣 ∈ 𝑉 ∶ deg 𝑣 = 1

Graph 𝐺′ ≔ “𝐺 without 𝑣” is a connected
graph with 𝑛 − 1 nodes and 𝑛 − 2 edges.

Induction Hypothesis: 𝐺′ is a tree.

Then, also 𝐺 must be a tree. 

11

Kurzer Exkurs zu Bäumen

𝐺′ ≔ “𝐺 without 𝑣”

𝑣
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Theorem: Let 𝑆, 𝑉 ∖ 𝑆 be a cut s.t. 𝐴 does not contain any cut edges and 
let 𝑢, 𝑣 , 𝑢 ∈ 𝑆, 𝑣 ∈ 𝑉 ∖ 𝑆 be a light cut edge w.r.t. 𝑆, 𝑉 ∖ 𝑆 . Then, 𝑢, 𝑣
is a safe edge for 𝐴.

Proof: Consider an MST 𝑇 that contains the edges in 𝐴.

12

Sichere Kanten

𝒗𝒖

𝑻

𝑺 𝑽 ∖ 𝑺

𝑨 𝒆

𝒇𝟏

𝒇𝟐

𝒇𝟑

Cut edge 𝒇𝒊 on 𝒖-𝒗 path 

• 𝑇′ ≔ 𝑉,𝐸 ∖ 𝑓𝑖 ∪ 𝑒
⟹ 𝑇′ is connected.

• 𝑇′ has 𝑛 − 1 edges
⟹𝑇′ is a tree.

• 𝑒 light edge 
⟹𝑤 𝑒 ≤ 𝑤 𝑓𝑖

• 𝑤 𝑇′ ≤ 𝑤 𝑇
⟹𝑇′ is an MST that 
contains 𝐴 and 𝑒.
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• Should be called Jarník’s algorithm
– was discovered by Prim in 1957 and published by Jarník already in 1930

• A possible implementation of the generic algorithm

𝐴 = ∅
while 𝐴 is not a spanning tree do

Find a safe edge 𝑢, 𝑣 for 𝐴

𝐴 = 𝐴 ∪ 𝑢, 𝑣

return 𝐴

• Idea: 𝐴 is always a connected subtree
– Start with an arbitrary node 𝑠 ∈ 𝑉

– Tree grows from 𝑠 by always adding a light edge of the cut that is induced by 
the set of nodes that are already connected by the edges in 𝐴.

13

Prim’s MST Algorithm
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Prim’s MST Algorithm: Example
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We need to show that 𝑒 is a safe edge for 𝐴.

• Follows directely because
– 𝑆 always exactly contains the nodes that are contained in some edge of 𝐴.

– There therefore cannot be a cut edge of 𝑆, 𝑉 ∖ 𝑆 in 𝐴.

– 𝑒 = 𝑢, 𝑣 is such an edge with smallest weight

– The theorem from before therefore implies that 𝑒 is a safe edge for 𝐴.

15

Prim’s MST Algorithm

𝑆 ≔ {𝑠}; 𝐴 ≔ ∅
while 𝑆, 𝐴 is not a spanning tree do

𝑒 = 𝑢, 𝑣 is an edge with minimum weight,
such that 𝑢 ∈ 𝑆 and 𝑣 ∉ 𝑆

𝑆 ≔ 𝑆 ∪ 𝑣 ; 𝐴 ≔ 𝐴 ∪ 𝑢, 𝑣
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• Nodes in 𝑺 are called marked
– These are exactly the nodes that are in the subtree defined by 𝐴.

• A step of the algorithm:
– One looks for an edge with smallest weight to connect a marked node 

(a node in 𝑆) with an unmarked node.

– This edge can in principle connect any unmarked node 𝑢 ∈ 𝑉 ∖ 𝑆 with any 
marked node in 𝑆.

• Nodes 𝒖 ∈ 𝑽 ∖ 𝑺: 
– 𝛼 𝑢 is the closest neighbor of 𝑢 in the subtree defined by the edges in 𝐴.

– 𝑑 𝑢 = dist 𝑢, 𝛼 𝑢

• 𝑑 𝑢 = ∞ if 𝑢 has no neighbor in 𝑉 ∖ 𝑆

– We thus always look for a node 𝑢 ∈ 𝑉 ∖ 𝑆 with smallest 𝑑 𝑢 and add the 
edge 𝑢, 𝛼 𝑢 to 𝐴.

– For this, the values 𝑑 𝑢 have to be updated after every step.

16

Implementation of Prim’s Algorithm
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• Nodes in 𝑆 are marked

• Node 𝑢 in 𝑉 ∖ 𝑆: 
– 𝛼 𝑢 is the closest neighbor of 𝑢 in 𝑆 (if defined)

– 𝑑 𝑢 = dist 𝑢, 𝛼 𝑢 (or 𝑑 𝑢 = ∞ if 𝑢 ∉ 𝑆 or 𝛼 𝑢 = NULL)

for all 𝑢 ∈ 𝑉 ∖ 𝑠 do
𝑢.marked = false; 𝑑(𝑢) = ∞; 𝛼 𝑢 = NULL

𝑑 𝑠 = 0; 𝐴 = ∅ // We start at node 𝑠

while there are unmarked nodes do

𝑢 = unmarked node with minimal 𝑑 𝑢

for all unmarked neighbors 𝑣 of 𝑢 do
if 𝑤 𝑢, 𝑣 < 𝑑(𝑣) then

𝛼(𝑣) = 𝑢; 𝑑 𝑣 = 𝑤 𝑢, 𝑣

𝑢.marked = true

if 𝑢 ≠ 𝑠 then 𝐴 = 𝐴 ∪ 𝑢, 𝛼(𝑢)

17

Implementation of Prim’s Algorithm
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Heap / Priority Queue:

• Manages a set of (key,value) pairs

Operations:

• create() : creates an empty heap 

• H.insert(x, key) : inserts element x with key key

• H.getMin() : returns element with smallest key

• H.deleteMin() : deletes element with smallest key
– H.getMin() and H.deleteMin() need to be consistent

• H.decreaseKey(x, newkey)   : If newkey is smaller than the key of x, 
the key is changed from x to newkey

18

Abstract Data Types : Priority Queue
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𝐻 = new priority queue; 𝐴 = ∅

for all 𝑢 ∈ 𝑉 ∖ {𝑠} do

𝐻.insert(𝑢, ∞); 𝛼(𝑢) = NULL

𝐻.insert(𝑠, 0)

while 𝐻 is not empty do

𝑢 = H.deleteMin()

for all unmarked neighbors 𝑣 of 𝑢 do

if 𝑤 𝑢, 𝑣 < 𝑑(𝑣) then

𝐻.decreaseKey(𝑣, 𝑤 𝑢, 𝑣 )

𝛼 𝑣 = 𝑢

𝑢.marked = true

if 𝑢 ≠ 𝑠 then 𝐴 = 𝐴 ∪ 𝑢, 𝛼 𝑢

19

Implementation of Prim’s Algorithm
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Number of priority queue operations

• create 𝟏

• insert 𝑶(𝒏) (every node exactly once)

• getMin / deleteMin 𝑶 𝒏 (every node exactly once)

• decreaseKey 𝑶(𝒎) (for every edge at most once,
when the first node of the edge
is added to 𝑆)

20

Analysis of Prim’s MST Algorithm
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Implementation as a binary tree with the min-heap property

• This data structure is often also called a heap

• A tree has the min-heap property if in every subtree, the root has 
the smallest key.

• getMin operation: trivial!

• Tree is always as balanced as possible
– All except for the bottom level is full.

– The bottom-most level are filled from left to right.

21

Priority Queues
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Insert element with key 𝟖

22

Priority Queues : Insert
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Delete element at the root (with minimum key)

23

Priority Queues : Delete-Min
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Decrease Key: Node with key 𝟏𝟑⟹ new key 𝟗

24

Priority Queues : Decrease-Key
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For the decrease-key operation, one needs to have a reference to
the node of which the key has to be decreased.
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• The discussed variant is also called a binary heap
– durch einen Binärbaum mit Min-Heap-Eigenschaft implementiert

• Height (or depth) of the tree is always exactly 𝐥𝐨𝐠𝟐 𝒏

– Number of nodes in a full binary tree of height is 2𝑖+1 − 1

Number nodes at distance 𝑗 from the root is 2𝑗:

#nodes =

𝑗=0

𝑖

2𝑗 = 2𝑖+1 − 1.

• Running time of all operations: 𝑶 𝐥𝐨𝐠𝒏
– If the binary tree if somehow implemented in a reasonable way.

– One only needs to go up the tree once (for insert, decreaseKey)
or down (for deleteMin)

– We will next see an elegant way of implementing binary heaps

25

Priority Queues : Analysis
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Idea: Store everything in an array at positions 𝟏 to 𝒏

• This is possible because the binary tree is perfectly balanced

• For a node at position 𝑖
– Left child is at position 𝑗 = 2 ⋅ 𝑖, right child is at position 𝑗 = 2 ⋅ 𝑖 + 1

– Parent is a position 𝑗 = Τ𝑖 2 (integer division, i.e., 𝑗 = Τ𝑖 2 )

26

Binary Heaps : Array Implementation

3

10 7

11 2313 9

17 14 16 2417

1 

2 3

4 5 6 7

8 9 10 11 12



Algorithms and Data StructuresFabian Kuhn

• The array implementation of heaps (priority queues) provides 
another very efficient sorting algorithm.

Heapsort (𝑯 is a binary heap, sort array 𝑨)

H = new BinaryHeap()

for i = 0 to n – 1 do
H.insert(A[i])

for i = 0 to n – 1 do
A[i] = H.deleteMin()

• Running time: 𝑶 𝒏 𝐥𝐨𝐠 𝒏

27

Heapsort
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𝐻 = new BinaryHeap(); 𝐴 = ∅

for all 𝑢 ∈ 𝑉 ∖ {𝑠} do

𝐻.insert(𝑢, ∞); 𝛼(𝑢) = NULL

𝐻.insert(𝑠, 0)

while 𝐻 is not empty do

𝑢 = H.deleteMin()

for all unmarked neighbors 𝑣 of 𝑢 do

if 𝑤 𝑢, 𝑣 < 𝑑(𝑣) then

𝐻.decreaseKey(𝑣, 𝑤 𝑢, 𝑣 ); 𝛼 𝑣 = 𝑢

𝑢.marked = true

if 𝑢 ≠ 𝑠 then 𝐴 = 𝐴 ∪ 𝑢, 𝛼 𝑢

Running time: 𝑶 𝒎 ⋅ 𝐥𝐨𝐠𝒏

• 𝑛 insert operations and deleteMin operations

• ≤ 𝑚 decreaseKey operations

28

Prim’s Algorithm with Binary Heaps
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𝐻 = new BinaryHeap(); 𝐴 = ∅

for all 𝑢 ∈ 𝑉 ∖ {𝑠} do

𝐻.insert(𝑢, ∞); 𝛼(𝑢) = NULL

𝐻.insert(𝑠, 0)

while 𝐻 is not empty do

𝑢 = H.deleteMin()

if not u.marked then

for all unmarked neighbors 𝑣 of 𝑢 do

if 𝑤 𝑢, 𝑣 < 𝑑(𝑣) then

𝐻.insert(𝑣, 𝑤 𝑢, 𝑣 ); 𝛼 𝑣 = 𝑢

𝑢.marked = true

if 𝑢 ≠ 𝑠 then 𝐴 = 𝐴 ∪ 𝑢, 𝛼 𝑢

Running time: 𝑶 𝒎 ⋅ 𝐥𝐨𝐠𝒏

• 𝑂 𝑚 insert operations and deleteMin operations

29

Prim’s Algorithm without Decrease-Key
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Running time with binary heaps: 𝑶 𝒎 ⋅ 𝐥𝐨𝐠𝒏

• 𝑛 ≤ 𝑚 + 1 insert operations and deleteMin operations

• ≤ 𝑚 decreaseKey operations

Best implementation of priority queues:

• Fibonacci Heaps (see algorithm theory lecture)

• Running time of operations (deleteMin, decreaseKey amortized)

insert: 𝑶 𝟏 ,    deleteMin: 𝑶 𝐥𝐨𝐠𝒏 ,    decreaseKey: 𝑶 𝟏

Running time with Fibonacci heaps: 𝑶 𝒎+ 𝒏 ⋅ 𝐥𝐨𝐠𝒏

• 𝑛 ≤ 𝑚 + 1 insert operations and deleteMin operations

• ≤ 𝑚 decreaseKey operations
(in this case, Prim needs to be implemented with decrease-key)

30

Prim’s Algorithmus: Better Running Time
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Kruskal’s MST Algorithm

𝐴 = ∅
while 𝐴 is not a spanning tree do

𝑒 = 𝑢, 𝑣 is an edge with smallest weight

s.t. 𝐴 ∪ 𝑢, 𝑣 does not contain a cycle

𝐴 = 𝐴 ∪ 𝑢, 𝑣
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Kruskal’s MST Algorithm: Example
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• We have to show that 𝑒 is a safe edge for 𝐴

– As 𝐴 ∪ 𝑢, 𝑣 is cycle-free, 𝑢 and 𝑣 are not connected through a path 

consisting of edges in 𝐴.

– There is a cut 𝑆, 𝑉 ∖ 𝑆 s. t. 𝐴 does not contain any cut edges, s. t. 𝑢 ∈ 𝑆
and 𝑣 ∈ 𝑉 ∖ 𝑆, and s. t. 𝑢, 𝑣 is a light cut edge.

33

Kruskal’s MST Algorithm

𝐴 = ∅
while 𝐴 is not a spanning tree do

𝑒 = 𝑢, 𝑣 is an edge with smallest weight

s.t. 𝐴 ∪ 𝑢, 𝑣 does not contain a cycle

𝐴 = 𝐴 ∪ 𝑢, 𝑣

𝒖 𝒗

𝑺 𝑽 ∖ 𝑺



Algorithms and Data StructuresFabian Kuhn

Kruskal’s Algorithm (Pseudocode)

1. 𝐴 = ∅

2. Sort edges by edge weight

3. for 𝑒 = 𝑢, 𝑣 ∈ 𝐸 (in sorted order) do

4. if 𝑢 and 𝑣 are in different components then

5. 𝐴 = 𝐴 ∪ 𝑒

• We must manage the connected componenten of the graph 
defined by the edges in 𝐴 efficiently

• Running time: 𝑂 𝑚 log 𝑛 for sorting and the overall running time 
for managing the components…

34

Implementation of Kruskal’s Algorithm



Algorithms and Data StructuresFabian Kuhn

Union-Find / Disjoint Sets:

• Manages a partition of elements

Operationen:

• create() : creates an empty union-find data structure

• U.makeSet(x) : adds set {𝑥} to the partition

• U.find(x) : returns the set of element 𝑥

• U.union(S1, S2) : merges sets 𝑆1 and 𝑆2 to set 𝑆1 ∪ 𝑆2

35

Abstract Data Types : Union-Find

𝒙𝟏
𝒙𝟐

𝒙𝟑

𝒙𝟒

𝒙𝟓

𝒙𝟔
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Kruskal’s Algorithm

1. 𝐴 = ∅

2. U = create new 

3. for all 𝑢 ∈ 𝑉 do

4. U.makeSet(𝑢)

5. Sort edges by edge weight

6. for all 𝑒 = 𝑢, 𝑣 ∈ 𝐸 (in sorted order) do

7. 𝑆𝑢 = U.find(𝑢); 𝑆𝑣 = U.find(𝑣)

8. if 𝑆𝑢 ≠ 𝑆𝑣 then

9. 𝐴 = 𝐴 ∪ 𝑒

10. U.union(𝑆𝑢,𝑆𝑣)
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Best Union-Find Data Structure

• Running time for 𝑚 union-find operations on 𝑛 elements
(𝑛 makeSet operations):

𝑶 𝒎 ⋅ 𝜶 𝒏

• 𝛼 𝑛 is the inverse of the Ackermann function and grows 
extremaly slowly (for all practically relevant 𝑛, 𝛼 𝑛 ≤ 5)

Running Time Kruskal

• Sort edges: 𝑂 𝑚 ⋅ log 𝑛
– If the weights are integers from 0,… , 𝑛𝑂 1 , the edges can be sorted with 

radix sort in linear time.

• Union-Find operations: 𝑂 𝑚 ⋅ 𝛼 𝑛

• Overall: 𝑂 𝑚 ⋅ log 𝑛
– Better if the edges can be sorted faster
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Both algorithms are typical examples for so-called

greedy algorithms

• In greedy algorithms, a solution is built in a step-by-step manner.

• In each step, the current best “element” is added to the solution.

• Already changes parts of the solution are not altered any more.

Prim and Kruskal algorithms to compute an MST

• We start with an empty edge set.

• In each step, the currently best edge is added
– For Prim: best edge that keeps the already added part connected

– For Kruskal: best edge s.t. the set can still be extended to a spanning tree.

• A chosen edge is never discarded later.
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Prim and Kruskal: Remarks


