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Exercise 1: Bucket Sort

Bucketsort is an algorithm to stably sort an array A[0..n−1] of n elements where the sorting keys of the
elements take values in {0, . . . , k}. That is, we have a function key assigning a key key(x) ∈ {0, . . . , k}
to each x ∈ A.
The algorithm works as follows. First we construct an array B[0..k] consisting of (initially empty)
FIFO queues. That is, for each i ∈ {0, . . . , k}, B[i] is a FIFO queue. Then we iterate through A and
for each j ∈ {0, . . . , n− 1} we attach A[j] to the queue B[key(A[j])] using the function enqueue.
Finally we empty all queues B[0], ..., B[k] using dequeue and write the returned values back to A, one
after the other. After that, A is sorted with respect to key and elements x, y ∈ A with key(x) = key(y)
are in the same order as before.
Implement Bucketsort based on this description. You can use the template BucketSort.py which
uses an implementation of FIFO queues that are available in Queue.py and ListElement.py.1 An
example of usage of this template is the following:

from Queue import Queue
from ListElement import ListElement
q = Queue ( )
q . enqueue ( ListElement ( 5 ) )
q . enqueue ( ListElement (1 7 ) )
q . enqueue ( ListElement ( 8 ) )
while not q . i s empty ( ) :

print ( q . dequeue ( ) . ge t key ( ) )

This would print the numbers 5, 17, 8 on three separate lines.

Solution:

def bucke t so r t ( array , k , key=lambda x : x ) :
’ ’ ’
Implements the bucke t s o r t a l gor i thm to s o r t
data e lements us ing a key func t i on to
a s s i gn s o r t i n g keys to data e lements

Args :
array : array o f data e lements
k : l a r g e s t key
key : a func t i on mapping data e lements to va l u e s
in range ( k+1) ( i d end i t y func t i on as d e f a u l t )

1Remember to make unit-tests and to add comments to your source code.



>>> b u c k e t s o r t ( [210 ,121 ,203 ,420 ,307 ] ,2 , lambda x : i n t ( x / 10) % 10)
[203 , 307 , 210 , 121 , 420]
>>> b u c k e t s o r t ( [ ] , 10)
[ ]
>>> b u c k e t s o r t ([10− i f o r i in range ( 10 ) ] , 10)
[ 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 ]
’ ’ ’
# add your code here
bucket = [ Queue ( ) for i in range ( k+1)]
for i in range ( len ( array ) ) :

bucket [ key ( array [ i ] ) ] . enqueue ( ListElement ( array [ i ] ) )
i = 0
for j in range ( k+1):

while not bucket [ j ] . i s empty ( ) :
array [ i ] = bucket [ j ] . dequeue ( ) . ge t key ( )
i += 1

return array

Exercise 2: Radix Sort

Assume we want to sort an array A[0..n−1] of size n containing integer values from {0, . . . , k} for
some k ∈ N. We describe the algorithm Radixsort which uses BucketSort as a subroutine.
Let m = blogb kc. We assume each key x ∈ A is given in base-b representation, i.e., x =

∑m
i=0 ci · bi

for some ci ∈ {0, . . . , b− 1}. First we sort the keys according to c0 using BucketSort, afterwards we
sort according to c1 and so on.2

(a) Implement Radixsort based on this description. You may assume b = 10, i.e., your algorithm
should work for arrays containing numbers in base-10 representation. Use Bucketsort as a sub-
routine.

(b) Compare the runtimes of Bucketsort and Radixsort. For both algorithms and each k ∈ {i · 104 |
i = 1, . . . , 50}, use an array of size 104 with randomly chosen keys from {0, . . . , k} as input and
plot the runtimes. Shortly discuss your results.

(c) Explain the asymptotic runtime of your implementations of Bucketsort and Radixsort depending
on n and k.

Solution:

(a) def r a d i x s o r t ( array , k ) :
’ ’ ’
Implements the rad i x s o r t a l gor i thm to s o r t

data e lements wi th keys in range ( k+1)
Args :

array : array o f data e lements
k : l a r g e s t key

>>> r a d i x s o r t ( [123 ,1111 ,789 ,456 ,0 ,12 ,13 ,247] ,2000)
[ 0 , 12 , 13 , 123 , 247 , 456 , 789 , 1111]
>>> r a d i x s o r t ([1000− i f o r i in range (0 ,1000) ] ,1000) == \

[ i f o r i in range (1 ,1001) ]
True
’ ’ ’

m = math . c e i l (math . l og (k , 10) )

2The i-th digit ci of a number x ∈ N in base-b representation (i.e, x = c0 · b0 + c1 · b1 + c2 · b2 + . . .), can be obtained
via the formula ci = (x mod bi+1) div bi, where mod is the modulo operation and div the integer division.



for i in range (m+1):
key = lambda x : ( x % 10∗∗( i +1)) // 10∗∗ i

BucketSort . bucke t s o r t ( array , 10 , key )
return array

(b) See Figure 1. We see that Bucketsort is linear in k. For Radixsort the situation is not that clear.
At the first sight, the runtime could be constant, but upon closer examination (see Figure 2) we
see a step at k = 105. The reason is that Radixsort calls Bucketsort for each digit in the input
and the number of these digits (and therefore the calls of Bucketsort) is increased from 5 to 6 at
k = 105.

(c) Bucketsort goes through A twice, once to write all values from A into the buckets and another
time to write the values back to A. This takes time O(n) as writing a value into a bucket and
from a bucket back to A costs O(1). Additionally, Bucketsort needs to allocate k empty lists and
write it into an array of size k which takes time O(k). Hence, the runtime is O(n + k).

RadixSort calls Bucketsort for each digit. The keys have m = O(log k) digits, so we call Bucketsort
O(log k) times. One run of Bucketsort takes O(n) here as the keys according to which Bucketsort
sorts the elements are from the range {0, . . . , 9}. The overall runtime is therefore O(n log k).
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Figure 1: Plot for exercise 2 b).
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Figure 2: Considering a larger range of keys to visualize the second step at 106.


