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Exercise 1: Hashing - Collision Resolution with Open Addressing

(a) Let h(s, j) := h1(s)− 2j mod m and let h1(x) = x+ 2 mod m. Insert the keys 51, 13, 21, 30, 23,
72 into the hash table of size m = 7 using linear probing for collision resolution (the table should
show the final state).
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(b) Let h(s, j) := h1(s)+ j ·h2(s) mod m and let h1(x) = x mod m and h2(x) = 1+
(
x mod (m−1)

)
.

Insert the keys 28, 59, 47, 13, 39, 69, 12 into the hash table of size m = 11 using the double
hashing probing technique for collision resolution. The hash table below should show the final
state.
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Sample Solution

(a)

30 13 21 72 51 23
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(b)

69 13 47 59 39 28 12
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Exercise 2: Application of Hashtables

Consider the following algorithm:

Algorithm 1 algorithm . Input: Array A of length n with integer entries

1: for i = 1 to n− 1 do
2: for j = 0 to i− 1 do
3: for k = 0 to n− 1 do
4: if |A[i]−A[j]| = A[k] then
5: return true
6: return false



(a) Describe what algorithm computes and analyse its asymptotical runtime.

(b) Describe a different algorithm B for this problem (i.e., B(A) = algorithm(A) for each input A)
which uses hashing and takes time O(n2).

You may assume that inserting and finding keys in a hash table needs O(1) if α = O(1) (α is the
load of the table).

(c) Describe another algorithm for this problem without using hashing which takes time O(n2 log n).

Sample Solution

(a) The algorithm checks if there are two entries in the array whose distance (absolute value of the
difference) equals some entry in the array. If so, it returns “true”, otherwise “false”. In case it
returns “false”, the algorithm runs completely through all three loops. It considers

n−1∑
i=1

i =
n(n− 1)

2
= O(n2)

many pairs (i, j) and for each of this pair it checks n times the if-condition in line 4. Therefore,
the runtime is O(n3).

(b) We compute an array B of size O(n2) which contains an entry |A[i]−A[j]| for each pair (i, j) with
0 ≤ j < i < n. This takes time O(n2). Afterwards we allocate a hash table of size O(n2), choose
a suitable hash function h and hash the values from B into the table H (this takes O(n2) under
ther assumption that one insert operation takes O(1)). Finally, we test for each entry in A if it is
contained in H, taking n times O(1). Hence the overall runtime is O(n2).

(c) We sort A, taking O(n log n). Afterwards we compute array B as in part (b), taking O(n2). Now
we test for each entry in B if it is in A using binary search. This takes n2 times O(log n). The
overall runtime is dominated by the last step and equals O(n2 log n).


