Algorithm Theory

Monday, September 3, 2018, 10:00-12:00

Name:
Matriculation No.:
Signature:

Do not open or turn until told so by the supervisor!

- Put your student ID on the table next to you so we can check it.
- Write your name and matriculation number on this page and sign the document.
- Your signature confirms that you have answered all exam questions without any help, and that you have notified exam supervision of any interference.
- You are allowed to use a summary of five (single-sided) A4 pages.
- Write legibly and only use a pen (ink or ball point). Do not use red! Do not use a pencil!
- You may write your answers in English or German language.
- No electronic devices are allowed.
- Only one solution per task is considered! Make sure to strike out alternative solutions, otherwise the one yielding the minimal number of points is considered.
- Detailed steps might help you to get more points in case your final result is incorrect.
- The keywords Show..., Prove..., Explain... or Argue... indicate that you need to prove or explain your answer carefully and in sufficient detail.
- The keywords Give..., State... or Describe... indicate that you need to provide an answer solving the task at hand but without proof or deep explanation (except when stated otherwise).
- You may use information given in a Hint without further explanation.
- Read each task thoroughly and make sure you understand what is expected from you.
- Raise your hand if you have a question regarding the formulation of a task.
- A total of 40% of all possible points ($\mathbf{4 8}$ points) is sufficient to pass this exam.
- A total of 80% of all possible points ($\mathbf{9 6}$ points) is sufficient for the best grade.
- There is a separate solution page for each exercise and two additional blank pages at the end.
- Write your name on all sheets!

Task	1	2	3	4	5	6	Total
Maximum	43	12	14	13	12	26	120
Points							

Task 1: Short Questions

(a) For the following two statements, state whether they are true or false, and explain why.
(I) (6 Points) Let $G=(V, E)$ be a connected, undirected graph with edge-weight function $w: E \rightarrow \mathbb{R}$ and assume that all edge weights are distinct. Consider a cycle $\left(v_{1}, v_{2}, \ldots, v_{k+1}\right)$ of length k, where $\left\{v_{j}, v_{j+1}\right\} \in E$ for all $j \leq k$, and $v_{1}=v_{k+1}$. Let $\left\{v_{i}, v_{i+1}\right\}$ be the edge in the cycle with the largest edge weight. Then, edge $\left\{v_{i}, v_{i+1}\right\}$ does not belong to the minimum spanning tree T of G.
(II) (5 Points) Assume that we have a counter C that is represented by n binary bits. The counter supports two operations: increment and decrement. The cost for each operation is the number of bits it flips to represent the new number. Then the worstcase amortized cost per operation for an arbitrary sequence of operations is $\Theta(n)$.
(b) (7 Points) Consider the following Fibonacci heap (black nodes are marked, white nodes are unmarked). How does the given Fibonacci heap look after a decrease-key ($v, 2$) operation and how does it look after a subsequent delete-min operation?

(c) (6 Points) Let D be a data structure that stores integers and supports two operations; Insert (X) inserts integer X into D and Remove-Min removes and returns the smallest integer in D . When there are n elements in D , the cost of an Insert operation is T_{n} and the cost of a Remove-Min is $O(\sqrt{\log n})$. Let us assume that the fastest algorithm to sort n integers runs in time $\Omega(n \log n)$. Prove that $T_{n} \in \Omega(\log n)$.
(d) (6 Points) Let A be an unsorted array of n distinct integers. Describe an algorithm that finds the $k^{\text {th }}$ smallest integer in $O(n)$ expected time.
Remark: No need to do the runtime analysis!
(e) ($\mathbf{8}$ Points) Consider the PRAM model with $\lceil n / 2\rceil$ processors. Assume that memory cells c_{1}, \ldots, c_{n} contain integers. Describe a parallel EREW algorithm that computes the maximum integer in c_{1}, \ldots, c_{n} in $O(\log n)$ depth (number of parallel steps). Explain the correctness and running time (depth) of your algorithm.
(f) (5 Points) Consider an undirected graph $G=(V, E)$ with $2 n$ nodes, i.e., $|V|=2 n$. Prove that G has matching of size $n / 2$ if every node $v \in V$ has degree n.

Solution Task 1

Task 2: Stabbing Intervals

Given a set I of n intervals on the real line, a set of real numbers S is said to stab I if for every $I^{\prime} \in I$, there is a real number $s \in S$ such that $s \in I^{\prime}$.

As an example $S=\{a, b\}$ stabs $I=\left\{I_{1}, I_{2}, I_{3}, I_{4}, I_{5}\right\}$ in the following picture.

Provide an efficient greedy algorithm that for any given set I of intervals on the real line, finds a minimum cardinality set of real numbers that stabs I. Prove the correctness of your algorithm.

Solution Task 2

Task 3: Balanced Partitioning

You are given a set \mathcal{X} of n integers in the range of $[0, K]$. The goal is to partition S into two subsets \mathcal{X}_{1} and \mathcal{X}_{2} such that $\left|S_{1}-S_{2}\right|$ is minimized, where S_{1} is the sum of the integers in \mathcal{X}_{1} and S_{2} is the sum of the integers in \mathcal{X}_{2}.

Provide an algorithm to achieve the goal in time $O\left(n^{2} K\right)$. Explain why the running time of your algorithm is $O\left(n^{2} K\right)$.

Solution Task 3

Task 4: Amortized Analysis

You are given a data structure which consists of a singly linked list that offers two operations. The first operation is $\operatorname{Insert}(x)$, which inserts an element with a unique integer key x in front of the list as the new head. The second operation is $\operatorname{Split}(x)$, which splits off and discards the element with key x and all elements in front of it, so that afterwards the list starts with the successor of x as a new head. Assume that all inserted keys are unique and that whenever $\operatorname{Split}(x)$ is called, the key x is contained in the current list.
(a) (4 Points) Briefly explain how these two operations can be implemented. Give the running time using the O-Notation. Assume that the list contains n elements and that running time is measured by the number of pointers that have to be read.
(b) (9 Points) Define a suitable potential function to prove that a series of n Insert and Split operations has an amortized running time of $O(1)$ per operation (still under the assumption that x is contained in the list if $\operatorname{Split}(x)$ is called).

Solution Task 4

Task 5: Approximation Algorithms

Let $G=(U \dot{\cup} V, E)$ be a bipartite graph. We say that G is light if all the nodes in U have degree exactly 2 . We call a subset $R \subseteq V$ a representative of G if every node in U has a neighbor in R. We consider the problem of finding a minimum size representative in a given light bipartite graph.

Provide an efficient 2 -approximation algorithm to solve the problem. Explain why your algorithm is a 2 -approximation.

Hint: One possible solution is to reduce the problem to a known problem from the lecture. Try to first construct a graph H, which is defined only on the vertices in V.

Solution Task 5

Task 6: Randomized and Online Algorithms

Let $G=(V, E)$ be an arbitrary unweighted undirected graph. A maximum cut of G is a cut whose size is at least the size of any other cut in G.
(a) (4 Points) Give a simple randomized algorithm that returns a cut of size at least $1 / 2$ times the size of a maximum cut in expectation and prove this property.
(b) (10 Points) Prove that the following deterministic algorithm (Algorithm 1) returns a cut of size at least $1 / 2$ times the size of a maximum cut.

```
Algorithm 1 Deterministic Approximate Maximum Cut
    Pick arbitrary nodes \(v_{1}, v_{2} \in V\)
    \(A \leftarrow\left\{v_{1}\right\}\)
    \(B \leftarrow\left\{v_{2}\right\}\)
    for \(v \in V \backslash\left\{v_{1}, v_{2}\right\}\) do
        if \(\operatorname{deg}_{A}(v)>\operatorname{deg} g_{B}(v)\) then \(\quad \triangleright \operatorname{deg}_{X}(v)\) is the number of \(v\) 's neighbors in \(X \subseteq V\).
            \(B \leftarrow B \cup\{v\}\)
        else
            \(A \leftarrow A \cup\{v\}\)
    Output \(A\) and \(B\)
```

(c) (5 Points) Let us now consider an online version of the maximum cut problem, where the nodes V of a graph $G=(V, E)$ arrive in an online fashion. The algorithm should partition the nodes V into two sets A and B such that the cut induced by this partition is as large as possible. Whenever a new node $v \in V$ arrives together with the edges to the already present nodes, an online algorithm has to assign v to either A or B. Based on the above deterministic algorithm (Alg. 1), describe a deterministic online maximum cut algorithm with strict competitive ratio at least $1 / 2$. You can use that fact that Algorithm 1 computes a cut of size at least half the size of a maximum cut.

Hint: An online algorithm for a maximization problem is said to have strict competitive ratio α if it guarantees that $\mathrm{ALG} \geq \alpha \cdot \mathrm{OPT}$, where ALG and OPT are the solutions of the online algorithm and of an optimal offline algorithm, respectively.
(d) (7 Points) Show that no deterministic online algorithm for the online maximum cut problem can have a strict competitive ratio that is better than $1 / 2$.

Solution Task 6

Additional Sheet

Additional Sheet

