
Albert-Ludwigs-Universität
Institut für Informatik

Prof. Dr. F. Kuhn

Exam Algorithm Theory
Monday, February 23, 2015, 09:00-10:30

Name: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Matriculation Nr.: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Signature: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Do not open or turn until told so by the supervisor!

Instructions:
• Write your name and matriculation number on the cover page of the exam and sign the document!

Write your name on all sheets!
• Your signature confirms that you have answered all exam questions without any help, and that you

have notified exam supervision of any interference.
• Write legibly and only use a pen (ink or ball point). Do not use red! Do not use a pencil!
• You are not allowed to use any material except for a dictionary and a hand-written summary of at

most 5 A4 pages (corresponds to 5 single-sided A4 sheets!).
• There are 6 problems (with several questions per problem) and there is a total of 90 points. At

most 40% are needed to pass the exam, and 80% will net you the best grade, i.e., 18 points are
bonus points.

• Use a separate sheet of paper for each of the 6 problems.
• Only one solution per question is graded! Make sure to strike out any solutions that you do not

want to be considered!
• Explain your solutions! Just writing down the end result is not sufficient unless otherwise

indicated.

Question Achieved Points Max Points

1 17

2 18

3 12

4 14

5 12

6 17

Total 90



Problem 1: Short Questions (17 points)

• For the following two statements decide whether they are true or false. You do not need
to give a proof or counter example.

(a) (3 points) There are at most
(
n
2

)
s-t min-cuts in an s-t flow network with n nodes.

(b) (3 points) Brent’s Theorem says that for a given parallel computation with total work
T1 and span T∞, no parallel algorithm running on p processors can run faster than
T1−T∞

p
+ T∞.

• Solve the following two exercises.

(c) (5 points) The contraction algorithm (for randomized min-cut) always succeeds in
finding a min-cut when it is applied to a tree. Give an explanation why this statement
is true.

(d) (6 points) Either give an explanation if the following statement is true or provide a
counter example if it is false.
There exists some c ≥ 1 such that the Last In First Out (LIFO) paging algorithm is
c-competitive.
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Problem 2: Heaps (18 points)

(a) (6 points) Consider the Fibonacci heap in Figure 1a (the thick nodes are marked and the thin
ones are unmarked). How does the given Fibonacci heap look after inserting value 8 and
how does it look after a subsequent decrease-key(v, 2) operation?

(b) (6 points) Consider the binomial heap in Figure 1b. How does the binomial heap look after
inserting values 12 and 14 (in that order)? How does it look after a subsequent delete-min
operation (multiple solutions exist; state one valid solution)?

(c) (6 points) In a sequence of operations o1, . . . , on, let oi be a decrease-key operation. Show
that the decrease-key operation in a Fibonacci heap has constant amortized cost with the
help of the potential function Φ = R + 2M , where R is the number of trees (length of the
root list) and M is the number of marked nodes that are not in the root list.
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(a) Fibonacci Heap
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(b) Binomial Heap

Figure 1: Initial heaps
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Problem 3: Cover all Edges (12 points)

You are given an undirected graph G = (V,E), a capacity function c : V → N and a subset
U ⊆ V of the nodes. The goal is to cover every edge with the nodes in U , where every node
u ∈ U can cover up to c(u) of its incident edges.

Formally, we are interested in the existence of an assignment of the edges to incident nodes in
U such that each node u gets assigned at most c(u) of its incident edges.

(a) (10 points) Devise an efficient1 algorithm to determine whether such an assignment exists
with a given subset U and a given cost function c or not.

(b) (2 points) What is the running time of your algorithm?

Problem 4: Randomized Max Cut (14 points)

Let G = (V,E) be an undirected graph. Consider the following randomized algorithm: Every
node v ∈ V joins the set S with proability 1/2. The algorithm’s output is the cut (S, V \ S).
You can assume that (S, V \ S) actually is a cut, i.e., ∅ 6= S 6= V .

(a) (10 points) Show that with probability at least 1/3 this algorithm outputs a cut which is a
4-approximation to a maximum cut.

Remark: For a non-negative random variable X , the Markov inequality states that for all
t > 0 we have Pr(X ≥ t) ≤ E[X]

t
.

If you do not succeed with your choice of a random variable X you might try a different
one.

(b) (4 points) How can you use the above algorithm to devise a 4-approximation of a maximum
cut with probability at least 1 −

(
1
3

)k for k ∈ N. You do not need to show the success
probability of your idea.

Remark: If you could not solve a), you can still use the result as a black box for solving b).

1Trying out all possibilities is not an efficient algorithm.
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Problem 5: Nearest-Neighbour TSP (12 points)

Given is a symmetric traveling salesperson problem (TSP) instance where all edge weights are
either 1 or 2. Show that the nearest-neighbour greedy algorithm provides a factor 3

2
approxima-

tion for TSP.

Remark: Write a complete proof to gain full points.

Hint: You might want to see a TSP tour as a directed cycle.

Problem 6: Online Algorithm (17 points)

We consider the following online problem. You have an account starting with value zero. Now,
you are consecutively given natural numbers n1, n2, n3, . . . ∈ N one at each time. When re-
ceiving nt you can either add or subtract it from your account under the constraint that your
account does not attain a negative value, that is, you are forced to add nt to your account when
the current value of your account is less than nt.

Your goal is to keep the maximum value of your account, which is reached, as small as possible.

One example is:

Input Numbers Non Feasible Feasible Solution Optimal Solution
1, 3, 3, 4, 5, 2 1 + 3− 3− 4 + 5− 2 1 + 3 + 3− 4 + 5− 2 1 + 3− 3 + 4− 5 + 2

(maximum=8) (maximum=5)

(a) (10 points) Design a deterministic online algorithm which solves the problem with a com-
petitive ratio of 2. Prove that your algorithm is 2-competitive.

(b) (7 points) Show that there is no deterministic online algorithm with a competitive ratio
smaller than 1.5.

Remark: (Two) sequences of four numbers each (with up to three different values) are
sufficient to show this. Partial points are handed out if you can prove the claim for a smaller
competitive ratio µ ∈ (1, 1.5).
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