Exam Algorithm Theory

Monday, February 23, 2015, 09:00-10:30

Name:
Matriculation Nr.:

Signature:

Do not open or turn until told so by the supervisor!

Instructions:

- Write your name and matriculation number on the cover page of the exam and sign the document! Write your name on all sheets!
- Your signature confirms that you have answered all exam questions without any help, and that you have notified exam supervision of any interference.
- Write legibly and only use a pen (ink or ball point). Do not use red! Do not use a pencil!
- You are not allowed to use any material except for a dictionary and a hand-written summary of at most 5 A4 pages (corresponds to 5 single-sided A4 sheets!).
- There are 6 problems (with several questions per problem) and there is a total of 90 points. At most 40% are needed to pass the exam, and 80% will net you the best grade, i.e., 18 points are bonus points.
- Use a separate sheet of paper for each of the 6 problems.
- Only one solution per question is graded! Make sure to strike out any solutions that you do not want to be considered!
- Explain your solutions! Just writing down the end result is not sufficient unless otherwise indicated.

Question	Achieved Points	Max Points
1		17
2		18
3		12
4		14
5		12
6		17
Total		90

Problem 1: Short Questions (17 points)

- For the following two statements decide whether they are true or false. You do not need to give a proof or counter example.
(a) (3 points) There are at most $\binom{n}{2} s$ - t min-cuts in an s - t flow network with n nodes.
(b) (3 points) Brent's Theorem says that for a given parallel computation with total work T_{1} and span T_{∞}, no parallel algorithm running on p processors can run faster than $\frac{T_{1}-T_{\infty}}{p}+T_{\infty}$.
- Solve the following two exercises.
(c) (5 points) The contraction algorithm (for randomized min-cut) always succeeds in finding a min-cut when it is applied to a tree. Give an explanation why this statement is true.
(d) (6 points) Either give an explanation if the following statement is true or provide a counter example if it is false.
There exists some $c \geq 1$ such that the Last In First Out (LIFO) paging algorithm is c-competitive.

Problem 2: Heaps ($\mathbf{1 8}$ points)

(a) (6 points) Consider the Fibonacci heap in Figure 1a (the thick nodes are marked and the thin ones are unmarked). How does the given Fibonacci heap look after inserting value 8 and how does it look after a subsequent decrease-key $(v, 2)$ operation?
(b) (6 points) Consider the binomial heap in Figure 1b. How does the binomial heap look after inserting values 12 and 14 (in that order)? How does it look after a subsequent delete-min operation (multiple solutions exist; state one valid solution)?
(c) (6 points) In a sequence of operations o_{1}, \ldots, o_{n}, let o_{i} be a decrease-key operation. Show that the decrease-key operation in a Fibonacci heap has constant amortized cost with the help of the potential function $\Phi=R+2 M$, where R is the number of trees (length of the root list) and M is the number of marked nodes that are not in the root list.

Figure 1: Initial heaps

Problem 3: Cover all Edges (12 points)

You are given an undirected graph $G=(V, E)$, a capacity function $c: V \rightarrow \mathbb{N}$ and a subset $U \subseteq V$ of the nodes. The goal is to cover every edge with the nodes in U, where every node $u \in U$ can cover up to $c(u)$ of its incident edges.

Formally, we are interested in the existence of an assignment of the edges to incident nodes in U such that each node u gets assigned at most $c(u)$ of its incident edges.
(a) (10 points) Devise an efficient ${ }^{1}$ algorithm to determine whether such an assignment exists with a given subset U and a given cost function c or not.
(b) (2 points) What is the running time of your algorithm?

Problem 4: Randomized Max Cut (14 points)

Let $G=(V, E)$ be an undirected graph. Consider the following randomized algorithm: Every node $v \in V$ joins the set S with proability $1 / 2$. The algorithm's output is the cut $(S, V \backslash S)$. You can assume that $(S, V \backslash S)$ actually is a cut, i.e., $\emptyset \neq S \neq V$.
(a) (10 points) Show that with probability at least $1 / 3$ this algorithm outputs a cut which is a 4-approximation to a maximum cut.

Remark: For a non-negative random variable X, the Markov inequality states that for all $t>0$ we have $\operatorname{Pr}(X \geq t) \leq \frac{E[X]}{t}$.
If you do not succeed with your choice of a random variable X you might try a different one.
(b) (4 points) How can you use the above algorithm to devise a 4 -approximation of a maximum cut with probability at least $1-\left(\frac{1}{3}\right)^{k}$ for $k \in \mathbb{N}$. You do not need to show the success probability of your idea.
Remark: If you could not solve a), you can still use the result as a black box for solving b).

[^0]
Problem 5: Nearest-Neighbour TSP (12 points)

Given is a symmetric traveling salesperson problem (TSP) instance where all edge weights are either 1 or 2 . Show that the nearest-neighbour greedy algorithm provides a factor $\frac{3}{2}$ approximation for TSP.

Remark: Write a complete proof to gain full points.
Hint: You might want to see a TSP tour as a directed cycle.

Problem 6: Online Algorithm (17 points)

We consider the following online problem. You have an account starting with value zero. Now, you are consecutively given natural numbers $n_{1}, n_{2}, n_{3}, \ldots \in \mathbb{N}$ one at each time. When receiving n_{t} you can either add or subtract it from your account under the constraint that your account does not attain a negative value, that is, you are forced to add n_{t} to your account when the current value of your account is less than n_{t}.

Your goal is to keep the maximum value of your account, which is reached, as small as possible.
One example is:

Input Numbers	Non Feasible	Feasible Solution	Optimal Solution
$1,3,3,4,5,2$	$1+3-3-4+5-2$	F	(maximum=8)
		(maximum=5)	

(a) (10 points) Design a deterministic online algorithm which solves the problem with a competitive ratio of 2 . Prove that your algorithm is 2 -competitive.
(b) (7 points) Show that there is no deterministic online algorithm with a competitive ratio smaller than 1.5.

Remark: (Two) sequences of four numbers each (with up to three different values) are sufficient to show this. Partial points are handed out if you can prove the claim for a smaller competitive ratio $\mu \in(1,1.5)$.

[^0]: ${ }^{1}$ Trying out all possibilities is not an efficient algorithm.

