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Task 1: Short Questions (42 Points)

(a) (6 Points) Consecutively apply the following five operations on the given Fibonacci Heap
(black nodes are marked, white nodes are unmarked). How does the Fibonacci Heap look
like after the third operation and how does it look like after the fifth operation?

1. decrease-key(v, 1)
2. delete-min()
3. decrease-key(u, 2)
4. delete-min()
5. delete-min()
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(b) (8 Points) Given an integer n ≥ 1, your goal is to compute the number of n-bit binary strings
with no consecutive 1s. Show how this number can be computed in time linear in n

Remark: 10011010 is an 8-bit string that has consecutive 1s, whereas 10010010 is an 8-bit
string that has no consecutive 1s.

(c) (7 Points) For this question, we consider the EREW PRAM model. Assume that we are
given an array A of length n filled with 0s and 1s. The array is initially stored in the shared
memory. Show that a parallel algorithm can determine the smallest number j ≤ n such that
the number of 1s contained in A[0, . . . , j] is at least 42 (the result shall be 0 if there is no
such j) in time O(log n). How many processors do you need for this?

(d) (7 Points) Let G = (V,E) be a weighted undirected graph and let e ∈ E be an edge that is
not the heaviest edge of any cycle in G (i.e., any cycle containing e also contains an edge of
strictly larger weight). Show that e is contained in every minimum spanning tree of G.

(e) (6 Points) Let G be a graph with a maximum clique of size C. Assume that there is an algo-
rithmA that is a (1/2)-approximation algorithm for the maximum independent set problem.
Show how one can use A to find a clique of size at least C/2 of G.

(f) (8 Points) We are considering the following online minimum vertex cover problem. The
nodes V of a graph G are given initially and the edges E of G arrive in an online fashion.
An online algorithm has to always maintain a valid vertex cover S of G. Initially S = ∅ and
as new edges appear, an algorithm has to add nodes to S to keep all edges covered. Once a
node v has been added to S, v has to remain in S. Give a deterministic online algorithm for
this problem that has a competitive ratio of 2. Argue why your algorithm is 2-competitive.

Remark: You can use thereoms proved in the lecture without reproving them.
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Sample Solution

(a) State after three Operations:
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State after five Operations:
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(b) First Solution: Let T1(j) be the number of j-bit strings with no consecutive 1’s and most
significant bit of 1. Similarly let T0(j) be the number of j-bit strings with no consecutive
1’s and most significant bit of 0. We obtain the following recursive relation:

T0(n) = T0(n−1) + T1(n−1), T1(n) = T0(n−1)

With base cases T0(1) = T1(1) = 1. The final result is T0(n) + T1(n) = T0(n+1). This
recursive function can be computed with the standard dynamic programming approach in
O(n), because we have to compute 2n values.

Second Solution: From the above equations we obtain

T0(n) = T0(n−1) + T1(n−1) = T0(n−1) + T0(n−2)

with T0(1) = 1 and T0(2) = T0(1) + T1(1) = 2, so basically T0(n) is the (n+ 1)-th
Fibonacci number. The result is as above T0(n+1), i.e. the (n+2)-th Fibonacci number.
The n-th Fibonacci number can be computed in O(n) bottom up, by simply memorizing the
respective last two values and get the next by summing them up.

3



(c) First step: We apply the algorithm from the lecture to compute the partial sums si =∑i
`=0 A[`] in O(log n) steps in the EREW model using O(n/ log n) processors. As result

we obtain A[i] := si. (2 Points)

Second step: (solution A) Processor i writes A[i] := n − i if A[i] ≥ 42 and A[i] := 0,
else. This takes O(1) steps and O(n) processors. Then we compute the maximum of A and
write it to A[0]. This can be done in O(1) on a strong CRCW PRAM machine with O(n)
processors (processor i writes value A[i] to A[0] and the largest value “wins”). We can
simulate a CRCW PRAM machine on an EREW PRAM machine with a time factor log n,
hence this is possible in O(log n) on an EREW machine. The result is j := 0 if A[0] = 0,
else j := n−A[0]. (3 Points)

Second step: (solution B) Processor i writes A[i] := 1 if A[i] ≥ 42 and A[i] := 0, else. This
takes O(1) steps and O(n) processors. Then we compute the sum s :=

∑n
`=0 A[`] of all

entries again in O(log n) time with O(n) processors. If s = 0 then we set j := 0, hence no
index as required in the exercise. Otherwise we set j := n−s+1. (3 Points)

Second step: (solution C) Conduct a binary search for the smallest index j with A[j] ≥ 42.
Takes O(log n) time on one processor. (3 Points)

In summary the computations requires O(log n) steps and O(n) processors. (2 Points)

(d) Assume that T ′ is a MST of G that does not contain e. Then T ′ ∪ {e} has a cycle C. Let
e′ be an edge on C with w(e′) > w(e). Then T :=

(
T \ {e′}

)
∪ {e} is a spanning tree and

w(T ) = w(T ′)−w(e′)+w(e) < w(T ′), a contradiction to the assumption that T ′ is a MST.

(e) Let G = (V,E) be the inverted graph of G, that has an edge between two nodes if G has
none and vice versa (formally E :=

(
V
2

)
\ E).

A maximum clique of G is a maximum subset C of V that fulfills the requirement that for
all u, v ∈ C we have {u, v} ∈ E. The latter is equivalent to the fact that for all u, v ∈ C
we have {u, v} /∈ E, which is the definition that C is a maximum independent set in G.
(3 Points)

First we compute G. Then we use A to compute a an independent set C ′ of G with |C ′| ≥
|C|/2 where C is a maximum independent set. According to our argument above, C ′ is a
clique and C a maximal clique |C ′| ≥ |C|/2. (3 Points)

(f) We define a greedy algorithm as follows. Initially S := ∅. For each incoming edge {u, v},
if u /∈ S and v /∈ S then S := S ∪ {u, v}. (5 Points)

The set S always covers all edges we know so far, because as soon as an edge appears that
has no endpoint in S, we add both endpoints of that edge to S. After all edges of G have
arrived, the resulting set S forms a maximal matching of G. From the lecture we know that
a maximal matching is a 1/2-approximation of a vertex cover of G. Hence our algorithm is
2-competetive. (3 Points)
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Task 2: Greedy Approximation Algorithm (27 Points)

Let G = (V,E) be a complete, undirected graph with positive edge weights d : E → R+ that
satisy the triangle inequality. That is, for any u, v, w ∈ V , we have d(u,w) ≤ d(u, v) + d(v, w)
(where d(x, y) is the weight of {x, y} ∈ E). Given an input parameter k ≥ 1, our goal is to
select a set S ⊆ V of k nodes, such that the maximum distance from a node to its nearest node
in S is as small as possible. You can imagine this as building k warehouses in set of cities V ,
such that the maximum distance between a city and its nearest warehouse is minimized.

For a set S ⊆ V of nodes, we define

d(S) := max
u∈V

min
v∈S

d(u, v).

Our goal thus is to find a set S of size |S| = k that minimizes d(S). Let S∗ ⊆ V be an optimal
solution.

Consider the following greedy algorithm, which computes a set Ŝ of size k. The algorithm first
chooses an arbitrary node u ∈ V and adds it to Ŝ. Then, as long as |Ŝ| < k, the algorithms
chooses a node v ∈ V that has the farthest distance to its current closest node in Ŝ and the algo-
rithm adds v to Ŝ. Our goal is to show that the described greedy algorithm has an approximation
ratio of at most 2, i.e., that d(Ŝ) ≤ 2d(S∗).

(a) (6 Points) First consider the case k = 1. In this case, Ŝ = {w} for an arbitrary node w ∈ V
and the optimal solution S∗ = {w∗} such that the maximum distance d(S∗) between w∗ and
any other node in V is minimized. Show that in this case d(Ŝ) ≤ 2d(S∗) holds.

(b) (6 Points) For the general case (i.e., for arbitrary k), first argue why at the end of the algo-
rithm, the distance between any two nodes in Ŝ is at least d(Ŝ).

(c) (10 Points) Show that d(Ŝ) ≤ 2d(S∗) for general k.

Hint: Assume that after greedily picking k nodes, one node still has a distance bigger than
2d(S∗) to its nearest node in Ŝ. Show that together with (b) this is not possible for a set S∗

of size k.

(d) (5 Points) Give a weighted complete graph for which the triangle inequality holds and a
possible solution Ŝ for the above greedy algorithm for which d(Ŝ) = 2d(S∗) (you can
choose the parameter k).

Sample Solution

(a) Let v ∈ V a node with d(v, w) = d(Ŝ). By definition of d(S∗), we have d(w,w∗) ≤ d(S∗)
and d(w∗, v) ≤ d(S∗). We obtain:

d(Ŝ) = d(v, w)
trian.-ineq.
≤ d(v, w∗) + d(w∗, w) ≤ 2d(S∗)
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(b) After picking k warehouses greedily according to the strategy above, let u be the node with
the maximum distance d(Ŝ) to its nearest warehouse. Assume there would be two nodes
w1, w2 ∈ Ŝ with distance smaller than d(Ŝ) (assume w.l.o.g. w1 was picked before w2).
Since u is farther from any warehouse than w2 we would have picked u instead of w2, a
contradiction.

(c) We do as told in the hint and assume a node v has a bigger distance than 2d(S∗) to its closest
warehouse in Ŝ. Then, according to part (b), all pairs of “greedy”-warehouses w ∈ S have
distance bigger than 2d(S∗) as well. Each “greedy” warehouse in Ŝ and also the point v must
have an “optimal” warehouse in S∗ within distance d(S∗). Since the pairwise distances in
Ŝ ∪ {v} are all bigger than 2d(S∗), the closest “optimal” warehouses in S∗ to each node
in Ŝ ∪ {v} are unique. However, |Ŝ ∪ {v}| = k + 1 and we have only |S∗| = k “optimal”
warehouses, a contradiction.

(d) We choose k = 1 and Ŝ consists of the red node and S∗ consists of the blue node.

1

2

1
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Task 3: Amortization (12 Points)

Consider some data structure D that supports the operations D.insert(x) to insert object x into
D and D.lookup(y) to read data from D. The operation D.lookup() always has a cost of 1.
The cost of the operation D.insert(x) depends on the number of objects in D. Assume that
before carrying out the operation, the number of objects stored in D is k−1. If k is an integer
power of 3, the cost of the operation equals k and otherwise the cost of the operation equals 1.

A sequence of n insert/lookup operations is performed on D (which is initially empty). Use
the potential function method to show that each operation has constant amortized cost.

Hint: For an integer k, the largest integer power of 3 that is at most k is 3blog3 kc.

Remark: If you did not find a potential function to show that each operation has constant amor-
tized cost, you can use the accounting method and get up to 6 points instead.

Sample Solution

With potential function: Let Di be the data structure after the ith operation. Define the poten-
tial function

Φ(Di) =
3

2

(
|Di| − 3blog3 |Di|c

)
(3 Points)

and the amortized cost of the ith operation as ai = ci + Φ(Di)−Φ(Di−1), where ci is the actual
cost.

As Φ(Di) ≥ 0 for all i and Φ(D0) = 0, the total amortized costs are upper bounded by the total
actual costs. (2 Points)

If the ith operation is lookup, we have for the amortized cost

ai = ci + Φ(Di−1)− Φ(Di−1) = ci = 1 . (2 Points)

If the ith operation is insert and |Di| is not a power of 3, we have

ai = 1 +
3

2

(
|Di| − 3blog3 |Di|c

)
− 3

2

(
|Di| − 1− 3blog3(|Di|−1)c)

(∗)
= 1 +

3

2

(
|Di| − (k−1)

)
− 3

2

(
|Di| − (k−1)

)
= 1 +

3

2

If the ith operation is insert and |Di| = 3k for some k ≥ 1, we have

ai = 3k −
(
Φ(Di−1)− Φ(Di)

)
= 3k − 3

2

(
3k − 1− 3blog3(3k−1)c

)
(∗)
= 3k − 3

2

(
3k − 1− 3k−1

)
=

3

2
.

(5 Points)

(∗): For k ≥ 1 we have 3k > 3k−1 > 3k−1 ⇒ k > log3(3k−1) > k−1⇒ blog3(3k−1)c = k−1.
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With accounting method: For each lookup we pay nothing and subtract nothing from the
account. For each insert where |Di| is no power of three, we pay 3/2 coins to the account.
For each insert where |Di| is a power of three, we subtract |Di| − 3/2 from the bank to
(almost) pay for the cost of this operation. (2 Points)

We show that the account is always at least 0 by induction. Initially the account is empty, i.e.
≥ 0. We subtract only from the account when an insert occurs, where |Di| = 3k for a
k ∈ N. We assume that (by the induction hypothesis) the account was at least 0 after the last
“expensive” insert, where we had 3k−1 elements in D. Since then there must have been at
least 3k − 1− 3k−1 “cheap” insert operations for each of which we paid 3/2 to the account.
That means we have at least 3

2
(3k− 1− 3k−1) = 3k− 3/2 on the account, which is exactly what

we subtract for this operation. (3 Points)

In that setting lookup has amortized cost of 1. Each insert where |Di| is no power of three
has amortized cost 1 + 3/2 = 5/2. Each insert where |Di| is a power of three, we have
amortized cost |Di| − (|Di|−) = 3/2. (1 Point)
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Task 4: Edge Coloring and Matching (18 Points)

The edge chromatic number of a graph G is defined as the smallest number of colors that suffice
to color the edges of G such that no two edges incident to the same node have the same color.
Consider an arbitrary bipartite graph G = (A ∪ B,E), where ∆ denotes the maximum degree
of any node of G.

(a) (7 Points) Show that the edge chromatic number of a bipartite graph G is ∆ if G is ∆-
regular.

(b) (6 Points) Show that the edge chromatic number of a bipartite graph G with maximum
degree ∆ is at most ∆ even if G is a non-regular. You can assume that (a) is true if you
could not prove it.

(c) (5 Points) Show that every bipartite graph G with maximum degree ∆ has a matching of
size at least |E|/∆. You can assume that (b) is true if you could not prove it.

Sample Solution

(a) Consider the following algorithm to color the graph with at most ∆ colors. Since G is a
regular bipartite graph, it has a perfect matching by the Hall’s theorem. Therefore, Let M1

be the perfect matching of G. Then, color all the edges in M1 by color c1, and remove all
these edges from G Let the new graph denoted by G2. Then, since G was ∆-regular, G2 is
(∆− 1)-regular. We repeat this for ∆− 1 more times to color all the edges of the graph to
c1, . . . , c∆.

(b) We transform the given by partite graph to a regular bipartite graph by adding extra nodes
to the side with less number of nodes. (2 Points)

Then, each time pick two nodes from in the left and the right side that have degree less
than ∆ and connect them. Repeat this until there is no node left with degree less than ∆.
(2 Points)

Then we apply the same technique in (a) to color this graph. Note that a coloring of graph
is a coloring of the original one. (2 Points)

(c) Consider the edge coloring with at most ∆ colors, which was shown to exist in part b). On
average each color class contains |E|/∆ edges, thus there is at least one color class that has
size at least |E|/∆. Since edges of one color form a matching, any class with size at least
|E|/∆ is a matching of that size for G.
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Task 5: Unique-Set-Cover Problem (21 Points)

We are given a set of n elements and a collection S of m subsets of the elements. The Unique-
Set-Cover Problem requires to choose a collection S ′ ⊆ S of sets that maximizes the number of
uniquely covered elements. An element is uniquely coved by S ′ if the element is in exactly one
of the sets in S ′. Note that the sets in S ′ do not necessarily need to cover all n elements at least
once, i.e., S ′ does not need to be a set cover.

Consider the following algorithm A: Initialize S ′ := ∅. For each subset s ∈ S, add s indepen-
dently with some given probability p to S ′.

(a) (6 Points) First assume that every element is in exactly x subsets of S (for some value
x). Provide the expected number of uniquely covered elements in the solution returned by
Algorithm A (as a function of n, x, and p).

(b) (7 Points) Assume now that each element is contained in at most x subsets and in at
least x/2 subsets of S (for a given value x). Show that by choosing the probability p
appropriately, the above randomized algorithm can be guaranteed to produce a constant
factor approximation to the Unique-Set-Cover problem in expectation.

(c) (8 Points) Provide a randomized algorithm with approximation ratio 1/O(logm) for the
Unique-Set-Cover problem.

Sample Solution

(a) n
(
x
1

)
p(1− p)x−1

(b) Let us fix p = 1/x. For an arbitrary integer d, fix an element s which is in d subsets of S.
Then the probability that s is uniquely covered by the solution of A is at least(

d

1

)
1

x

(
1− 1

x

)d−1

≥ x

2

1

x

(
1− 1

x

)x−1

≥ 1

2

(
1− 1

x

)x

≥ 1

2e
.

In expectation we have at least n/2e uniquely covered elements by the solution of A with
parameter p := 1/x. Obviously the best solution can have at most n uniquely covered
elements. The approximation ratio is therefore 1/2e.

(c) Let us partition the nodes into dlogme + 1 sets I0, . . . , Idlogme, where each element s in
set Ii is in d subsets of S for 2i ≤ d < 2i+1. Then, there is a set Ik with cardinality at
least Ω(n/ logm). We apply Algorithm A. For the elements in Ik the condition of part
(b) applies (x := 2k+1), meaning that we have an approximation ratio c (where 0 < c < 1
is constant) for the elements in Ik. That is our greedy solution uniquely covers at least
c|Ik| = Ω(n/ logm) nodes. Since the optimal solution can have at most n uniquely
covered elements we have the required approximation ratio of c|Ik|/n = O(1/ logm).
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