
Algorithms and Data StructuresFabian Kuhn

Lecture 11

Dynamic Programming

Algorithms and Data Structures

Fabian Kuhn

Algorithms and Complexity

Algorithms and Data StructuresFabian Kuhn

• Important algorithm design technique!

• Simple, but very often a very effective idea

• Many problems that naively require exponential time can be
solved in polynomial time by using dynamic programming.
– This in particular holds for optimization problems (min / max)

2

Dynamic Programming (DP)

DP ≈ careful / optimized brute force solution

DP ≈ recursion + reuse of partial solutions

Algorithms and Data StructuresFabian Kuhn

• Where does the name come from?

• DP was developed by Richard E. Bellman in the 1940s and 1950s. In his
autobiography, he writes:

"I spent the Fall quarter (of 1950) at RAND. My first task was to find a name for
multistage decision processes. … The 1950s were not good years for
mathematical research. We had a very interesting gentleman in Washington
named Wilson. He was Secretary of Defense, and he actually had a pathological
fear and hatred of the word research. … His face would suffuse, he would turn
red, and he would get violent if people used the term research in his presence.
You can imagine how he felt, then, about the term mathematical. … Hence, I felt
I had to do something to shield Wilson and the Air Force from the fact that I was
really doing mathematics inside the RAND Corporation. What title, what name,
could I choose? In the first place I was interested in planning, in decision making,
in thinking. But planning, is not a good word for various reasons. I decided
therefore to use the word “programming”. I wanted to get across the idea that
this was dynamic, this was multistage, this was time-varying. … It also has a
very interesting property as an adjective, and that it's impossible to use the
word dynamic in a pejorative sense. … Thus, I thought dynamic programming
was a good name. It was something not even a Congressman could object to. …“

3

DP: History

Algorithms and Data StructuresFabian Kuhn

Definition of the Fibonacci numbers 𝑭𝟎, 𝑭𝟏, 𝑭𝟐, …:

𝐹0 = 0, 𝐹1 = 1
𝐹𝑛 = 𝐹𝑛−1 + 𝐹𝑛−2

Goal: Compute 𝐹𝑛
• This can easily be done recursively…

def fib(n):
if n < 2:

f = n
else:

f = fib(n-1) + fib(n-2)
return f

4

Fibonacci Numbers

Algorithms and Data StructuresFabian Kuhn

def fib(n):
if n < 2:

f = n
else:

f = fib(n-1) + fib(n-2)
return f

• Recursion tree is a binary tree that is complete up to depth Τ𝑛 2.

• Running time : Ω 2 Τ𝑛 2

– We repeatedly compute the same things!
5

Running Time of Recursive Algorithm

fib(n)

fib(n-2) fib(n-1)

fib(n-4) fib(n-3) fib(n-3) fib(n-2)

fib(n-6) fib(n-4)fib(n-5) fib(n-5) fib(n-5) fib(n-4) fib(n-4) fib(n-3)

Algorithms and Data StructuresFabian Kuhn

Memoization: One stores already computed values
(on a notepad = memo)

memo = {}
def fib(n):

if n in memo: return memo[n]
if n < 2:

f = n
else:

f = fib(n-1) + fib(n-2)
memo[n] = f
return f

• Now, each value fib(i) is only computed once recursively
– For every 𝑖 we only go once through the blue part.

– The recursion tree therefore has ≤ 𝑛 inner nodes.

– The running time is therefore 𝑂 𝑛 .

6

Algorithm with Memoization

creates a new dictionary
(a hash table)

First check,if we have
already computed fib(n).

Store the computed value for
fib(n) in the hash table.

Algorithms and Data StructuresFabian Kuhn

Memoize: Store solutions for subproblems, reuse stored solutions
if the same subproblem appears again.

• For the Fibonacci numbers, the subproblems are 𝐹0, 𝐹1, 𝐹2, …

Running Time = #subproblems ⋅ time per subproblem

7

DP: A bit more precisely …

DP ≈ Recursion + Memoization

Usually just the number of
recursive calls per

subproblem.

Algorithms and Data StructuresFabian Kuhn

def fib(n):
fn = {}
for k in [0,1, 2, …, n]:

if k < 2:
f = k

else:
f = fn[k-1] + fn[k-2]

fn[k] = f
return fn[n]

• Go through the subproblms in an order such that one has always
already computed the subproblems that one needs.
– In the case of the Fibonacci numbers, compute 𝐹𝑖−2 and 𝐹𝑖−1, before

computing 𝐹𝑖.

8

Fibonacci: Bottom-Up

Algorithms and Data StructuresFabian Kuhn

• Given: weighted, directed graph 𝐺 = 𝑉, 𝐸,𝑤
– starting node 𝑠 ∈ 𝑉

– We denote the weight of an edge 𝑢, 𝑣 as 𝑤 𝑢, 𝑣

– Assumption: ∀𝑒 ∈ 𝐸:𝑤 𝑒 , no negative cycles

• Goal: Find shortest paths / distances from 𝑠 to all nodes
– Distance from 𝑠 to 𝑣: 𝑑𝐺 𝑠, 𝑣 (length of a shortest path)

9

Shortest Paths with DP

𝑠 1

3 4

9

17

11

10

1

3

6

8
9

1

15

2

9 7

6

3

Algorithms and Data StructuresFabian Kuhn

Recursive characterization of 𝒅𝑮 𝒔, 𝒗 ?

• How does a shortest path from 𝑠 to 𝑣 look like?

• Optimality of subpaths:
If 𝑣 ≠ 𝑠, then there is a node 𝑢, such that the shortest path
consists of a shortest path from 𝑠 to 𝑢 and the edge 𝑢, 𝑣 .

• Can we use this to compute the values 𝑑𝐺 𝑠, 𝑣 recursively?

10

Shortest Paths : Recursive Formulation

𝒔 𝒗𝒖

shortest path

∀𝒗 ≠ 𝒔 ∶ 𝒅𝑮 𝒔, 𝒗 = 𝐦𝐢𝐧
𝒖∈𝑵𝐢𝐧(𝒗)

𝒅𝑮 𝒔, 𝒖 + 𝒘 𝒖, 𝒗

Algorithms and Data StructuresFabian Kuhn

Recursive characterization of 𝒅𝑮(𝒔, 𝒗)?
𝑑𝐺 𝑠, 𝑣 = min

𝑢∈𝑁in(𝑣)
𝑑𝐺 𝑠, 𝑢 + 𝑤 𝑢, 𝑣 , 𝑑𝐺 𝑠, 𝑠 = 0

dist(v):
d = ∞
if v == s:

d = 0
else:

for (u,v) in E:
d = min(d, dist(u) + w(u,v))

return d

Problem: cycles!

• With cycles we obtain an infinite recursion
– Example: Cycle of length 2 (edges 𝑢, 𝑣 and 𝑣, 𝑢)

– dist(v) calls dist(u), dist(u) then again calls dist(v), etc.

11

Shortest Paths : Recursive Formulation

Algorithms and Data StructuresFabian Kuhn

memo = {}

dist(v):
if v in memo: return memo[v]
d = ∞
if v == s:

d = 0
else:

for (u,v) in E: (go through all incoming edges of v)
d = min(d, dist(u) + w(u,v))

memo[v] = d
return d

Running time: 𝑶 𝒎

• Number of subproblems: 𝑛

• Time for subproblem 𝑑𝐺 𝑠, 𝑣 : #incoming edges of 𝑣

12

Shortest Paths in Acyclic Graphs

Algorithms and Data StructuresFabian Kuhn

Observation:

• Edge 𝑢, 𝑣 ⟹ 𝑑𝐺 𝑠, 𝑢 must be computed before 𝑑𝐺 𝑠, 𝑣

• One can first compute a topological sort of the nodes.

Assumption:

• Sequence 𝑣1, 𝑣2, … , 𝑣𝑛 is a topological sort of the nodes.

D = “array of length n”
for i in [1:n]:

D[i] = ∞
if 𝑣𝑖 == 𝑠:

D[i] = 0
else:

for (𝑣𝑗 , 𝑣𝑖) in 𝐸: (incoming edges, top. sort ⟹ 𝑗 < 𝑖)

D[i] = min(D[i], D[j] + 𝑤(𝑣𝑗 , 𝑣𝑖))

13

Acyclic Graphs: Bottom-Up

Algorithms and Data StructuresFabian Kuhn

Idea: Introduce additional subproblems to
avoid cyclic dependencies

Subproblems 𝒅𝑮
𝒌

𝒔, 𝒗

• Length of shortest path consisting of at most 𝑘 edges

Recursive Definition:

𝑑𝐺
𝑘

𝑠, 𝑣 = min 𝑑𝐺
𝑘−1

𝑠, 𝑣 , min
𝑢,𝑣 ∈𝐸

𝑑𝐺
𝑘−1

𝑠, 𝑢 + 𝑤(𝑢, 𝑣)

𝑑𝐺
𝑘

𝑠, 𝑠 = 0, (∀𝑘 ≥ 0)

𝑑𝐺
0

𝑠, 𝑣 = ∞, (∀𝑣 ≠ 𝑠)

14

Shortest Paths in General Graphs

Algorithms and Data StructuresFabian Kuhn

memo = {}

dist(k, v):
if (k, v) in memo: return memo[(k, v)]
d = ∞
if s == v:

d = 0
elif k > 0:

d = dist(k-1, v)
for (u,v) in E:

(go through all incoming edges of v)
d = min(d, dist(k-1, u) + w(u,v))

memo[(k, v)] = d
return d

distance(v):
return dist(n-1, v)

15

Shortest Paths in General Graphs

Algorithms and Data StructuresFabian Kuhn

DP running time, typically:

#𝐬𝐮𝐛𝐩𝐫𝐨𝐛𝐥𝐞𝐦𝐬 ⋅ 𝐭𝐢𝐦𝐞 𝐩𝐞𝐫 𝐬𝐮𝐛𝐩𝐫𝐨𝐛𝐥𝐞𝐦

• Time per subproblem: recursive call costs 1 time unit
– Because of memoization, every subproblem is only called once

– Recursive cost is therefore captured by the first factor.

• Time per subproblem: typically #recursive possibilities

Shortest Paths:

• #subproblems: 𝑂 𝑛2

• Time per subproblem: #incoming edges

Running Time: 𝑂 𝑚 ⋅ 𝑛

• Same running time as for Bellman-Ford
– Algorithm essentially also corresponds to the Bellman-Ford algorithm.

16

Shortest Paths with DP: Running Time

Algorithms and Data StructuresFabian Kuhn

• Usually, dynamic programs are writte bottom-up
– It is often more efficient (no recursion, no hash table)

– It is often a natural formulation of the algorithm.

• Bottom-Up DP Algorithm
– Requires order in which the subproblems can be computed

(topological sort of the dependency graph)

– As we anyway have to make sure that there are no cyclic dependencies, this
topological sort can usually be optained very easily.

• Order for the Shortest Paths problem

– Sort 𝑑𝐺
𝑘

𝑠, 𝑣 by 𝑘 (increasingly)

– For equal 𝑘-values, there are no dependencies

17

Shortest Paths: Bottom-Up

Algorithms and Data StructuresFabian Kuhn

dist = “2-dimensional array”

for k in range(n):
for v in V:

d = ∞
if v == s:

d = 0
elif k > 0:

d = dist[k-1, v]
for (u,v) in E:

(go through all incoming edges of v)
d = min(d, dist[k-1, u] + w(u,v))

dist[k, v] = d

18

Shortest Paths: Bottom-Up

Algorithms and Data StructuresFabian Kuhn

• Dynamic programming is a good approach if a problem can be
solved recursively such that the number of possible different
subproblems that one has to solve recursively is relatively small.

19

5 Steps to a DP Solution

5 Steps Analysis

1) Define subproblems Count #subproblems

2) Guess (part of solution) Count #possibilities

3) Set up recursion formula Time per subproblem

4) Recursion + Memoization
or
set up bottom-up DP table

time = time per subproblem ⋅
#subproblems

5) Solve original problem Possibly requires additional time

Algorithms and Data StructuresFabian Kuhn 20

5 Steps to a DP Solution
5 Steps Fibonacci Number 𝑭𝒏

1) Define subproblems #subproblems = 𝑛

2) Guess (part of solution) nothing to guess, #possibilities = 1

3) Set up recursion formula Time per subproblem = 𝑂 1

4) Recursion + Memoization
or
set up bottom-up DP table

Time = time per subproblem ⋅ #subproblems
= O 1 ⋅ 𝑛 = 𝑂(𝑛)

5) Solve original problem Lösung ist Teilproblem 𝐹𝑛, Zeit 𝑂 1

5 Steps Single Source Shortest Paths (Bellman-Ford)

1) Define subproblems #subproblems = 𝑛 ⋅ (𝑛 − 1) (alle 𝑑𝐺
𝑘

𝑠, 𝑣)

2) Guess (part of solution) 𝑑𝐺
𝑘

𝑠, 𝑣 : edge to 𝑣, #possibilities: 1 + in-degree of 𝑣

3) Set up recursion formula Time per subproblem = Θ 1 + in_degree 𝑣

4) Recursion + Memoization
or
set up bottom-up DP table

Time = σsubproblems time per subproblem

= σ𝑣∈𝑉Θ 1 + in_degree 𝑣 = Θ 𝑉 ⋅ 𝐸

5) Solve original problem All 𝑑𝐺
𝑛−1

𝑠, 𝑣 , time 𝑂 𝑉

Algorithms and Data StructuresFabian Kuhn

Recursive Computation of the Optimization Function

• All possibilities are tested (recursively)

• The best one (min/max) is chosen

Computing the Solution

• The recursive call for the optimization function only returns the
optimal function value (e.g., length of a shortest path).

• To obtain the recursively computed solution, one has to
remember, which of the possibilities in each step gives the optimal
value.

• If doing DP with a hash table, this information is also stored in the
hash table.

• Bottom-up: In each cell of the table, one not only stores the value,
but also how the value was obtained.

21

Computing the Solution

Algorithms and Data StructuresFabian Kuhn

General DP

memo = {}
parent = {}

DP(x1, x2, …, xk):
if (x1, x2, …, xk) in memo:

return memo[(x1, x2, …, xk)]
if (x1, x2, …, xk) in base

value = …
else:

value = min/max of the value of DP(x1, x2, …, xk)
over predecessor node (y1, y2, …, yk) in
the dependency graph

memo[(x1, x2, …, xk)] = value

parent[(x1, x2, …, xk)] = (y1, y2, …, yk)-tuple that
achieved the min/max

return value

22

Computing Solution: Parent Pointers

Algorithms and Data StructuresFabian Kuhn

• For two strings 𝐴 and 𝐵, compute

Edit Distance 𝑫(𝑨,𝑩) (# edit op., to transform 𝐴 into 𝐵)

and also a minimal sequence of edit operations to transform
𝐴 into 𝐵.

• Example: mathematician multiplication:

23

Edit Distance

m a t h e m a t i c i a nu i p l o

l i c

Algorithms and Data StructuresFabian Kuhn

Given: Two strings 𝐴 = 𝑎1𝑎2…𝑎𝑚 and 𝐵 = 𝑏1𝑏2…𝑏𝑛

Goal: Determine the minimum number 𝐷(𝐴, 𝐵) of edit operations
required to transform 𝐴 into 𝐵

Edit operations:

a) Replace a character from string 𝐴 by a character from 𝐵

b) Delete a character from string 𝐴

c) Insert a character from string 𝐵 into 𝐴

m a – t h e m - - a t i c i a n

m u l t i p l i c a t i o - - n

24

Edit Distance

Algorithms and Data StructuresFabian Kuhn

• Cost for replacing character 𝑎 by 𝑏: 𝒄 𝒂, 𝒃 ≥ 𝟎

• Capture insert, delete by allowing 𝑎 = 휀 or 𝑏 = 휀:
– Cost for deleting character 𝑎: 𝒄(𝒂, 𝜺)

– Cost for inserting character 𝑏: 𝒄(𝜺, 𝒃)

• Triangle inequality:

𝑐 𝑎, 𝑐 ≤ 𝑐 𝑎, 𝑏 + 𝑐 𝑏, 𝑐

 each character is changed at most once!

• Unit cost model: 𝑐 𝑎, 𝑏 = ቊ
1, if 𝑎 ≠ 𝑏
0, if 𝑎 = 𝑏

25

Edit Distance : Cost Model

Algorithms and Data StructuresFabian Kuhn

𝑫𝒌,ℓ

Define 𝐴𝑘 ≔ 𝑎1…𝑎𝑘 , 𝐵ℓ ≔ 𝑏1…𝑏ℓ

𝐴

𝐵

26

Edit Distance: Subproblems

𝐵ℓ

𝐴𝑘

Edit distance between
prefix 𝐴𝑘 of 𝐴 and

prefix 𝐵ℓ of 𝐵

Subproblems: 𝑫𝒌,ℓ ≔ 𝑫 𝑨𝒌, 𝑩ℓ

Algorithms and Data StructuresFabian Kuhn

Three ways to end optimal “alignment” between 𝐴𝑘 and 𝐵ℓ:

1. 𝑎𝑘 is replaced by 𝑏ℓ:

𝐷𝑘,ℓ = 𝐷𝑘−1,ℓ−1 + 𝑐 𝑎𝑘 , 𝑏ℓ

2. 𝑎𝑘 is deleted:

𝐷𝑘,ℓ = 𝐷𝑘−1,ℓ + 𝑐 𝑎𝑘 , 휀

3. 𝑏ℓ is inserted:

𝐷𝑘,ℓ = 𝐷𝑘,ℓ−1 + 𝑐 휀, 𝑏ℓ

27

Computing the Edit Distance

𝐴𝑘−1

𝐵ℓ−1

𝒂𝒌

𝒃ℓ

𝐴𝑘−1

𝐵ℓ

𝒂𝒌

−

𝐴𝑘

𝐵ℓ−1

−

𝒃ℓ

Algorithms and Data StructuresFabian Kuhn

• Recurrence relation (for 𝑘, ℓ ≥ 1)

𝐷𝑘,ℓ = min

𝐷𝑘−1,ℓ−1 + 𝑐 𝑎𝑘 , 𝑏ℓ
𝐷𝑘−1,ℓ + 𝑐 𝑎𝑘 , 휀

𝐷𝑘,ℓ−1 + 𝑐 휀, 𝑏ℓ

=min

𝐷𝑘−1,ℓ−1 + 1 / 0

𝐷𝑘−1,ℓ + 1

𝐷𝑘,ℓ−1 + 1

• Need to compute 𝐷𝑖,𝑗 for all 0 ≤ 𝑖 ≤ 𝑘, 0 ≤ 𝑗 ≤ ℓ:

28

Computing the Edit Distance

unit cost model

𝑫𝒌−𝟏,ℓ−𝟏 𝑫𝒌−𝟏,ℓ

𝑫𝒌,ℓ−𝟏 𝑫𝒌,ℓ

+𝟏

+𝟏

+𝟏 / 𝟎

Algorithms and Data StructuresFabian Kuhn

Base cases:

𝐷0,0 = 𝐷 휀, 휀 = 0

𝐷0,𝑗 = 𝐷 휀, 𝐵𝑗 = 𝐷0,𝑗−1 + 𝑐 휀, 𝑏𝑗 = 𝑗

𝐷𝑖,0 = 𝐷 𝐴𝑖 , 휀 = 𝐷𝑖−1,0 + 𝑐 𝑎𝑖 , 휀 = 𝑖

Recurrence relation:

𝐷𝑖,𝑗 = min

𝐷𝑘−1,ℓ−1 + 𝑐 𝑎𝑘 , 𝑏ℓ
𝐷𝑘−1,ℓ + 𝑐 𝑎𝑘 , 휀

𝐷𝑘,ℓ−1 + 𝑐 휀, 𝑏ℓ

= min

𝐷𝑘−1,ℓ−1 + 1 / 0

𝐷𝑘−1,ℓ + 1

𝐷𝑘,ℓ−1 + 1

29

Recursion Equation of Edit Distance

unit cost model

unit cost model

Algorithms and Data StructuresFabian Kuhn 30

Order of the Subproblems

𝑏1 𝑏2 𝑏3 𝑏4 … 𝑏𝑛

𝑎1

𝑎𝑚

𝐷𝑖,𝑗−1

𝐷𝑖,𝑗

𝐷𝑖−1,𝑗−1

𝐷𝑖−1,𝑗

𝑎2

Algorithms and Data StructuresFabian Kuhn 31

Example

0 1

1 1

2 1

3 2

2 3

1 2

4 5

3 4

2 2

1 2

4 3

5 4

2 2

3 3

3 3

3 4

3 4

3 3

𝒂 𝒃 𝒄 𝒄 𝒂

𝒃

𝒂

𝒃

𝒅

𝒂

Algorithms and Data StructuresFabian Kuhn 32

Edit Operations

0 1

1 1

2 1

3 2

2 3

1 2

4 5

3 4

2 2

1 2

4 3

5 4

2 2

3 3

3 3

3 4

3 4

3 3

𝒂 𝒃 𝒄 𝒄 𝒂

𝒃

𝒂

𝒃

𝒅

𝒂
b a b d - a
- a b c c a

Algorithms and Data StructuresFabian Kuhn

• Running Time:
– Edit distance between two strings of lengths 𝑚 and 𝑛 can be computed in
𝑂 𝑚 ⋅ 𝑛 time.

• Obtain the edit operations:
– for each cell, store which rule(s) apply to fill the cell

– track path backwards from cell (𝑚, 𝑛)

• Unit cost model:
– interesting special case, each edit operation costs 1

• Optimization:
– If the edit distance is small, we do not need to fill out the whole table.

– If the edit distance is ≤ 𝛿, only entries at distance at most 𝛿 from the main
diagonal of the table are really relevant.

– For two strings of length 𝑛, we then only have to fill out 𝑂 𝛿 ⋅ 𝑛 entries.

– With this idea, one can compute the edit distance in time 𝑂 𝑛 ⋅ 𝐷 𝐴, 𝐵 .

33

Edit Distance – Summary

