
Algorithms and Data StructuresFabian Kuhn

Lecture 3

Abstract Data Types,
Simple Data Structures, Binary Search

Algorithms and Data Structures
Conditional Course

Fabian Kuhn

Algorithms and Complexity

Algorithms and Data StructuresFabian Kuhn

Algorithms

• How to solve a given problem efficiently?

• Goal: smallest possible complexity
– small runtime / small memory usage

– asymptotically, dependent on the problem size

Data Structures

• How to save data such that the access becomes as efficient as
possible?

• Depends on the types of operations we have to support!

• Good data structures necessary to obtain fast algorithms

• One needs fast algorithms to carry out data structure operations
optimally

2

Data Structures

Algorithms and Data StructuresFabian Kuhn

Abstract Data Type:

• Specification which kind of data one can support

• Specification of the operations to access the data
– including the semantics of the operations

Data Structure:

• A concrete way of implementing an abstract data type

• Depending on the implementation, the same operations might
have different runtimes (complexities)

We will now first briefly discuss the most important
abstract data types…

3

Abstract Data Types

Algorithms and Data StructuresFabian Kuhn

Array:

• holds a collection of elements (of the same type)

Operations:

• create(n) : creates an array of length 𝑛

• A.get(i) : returns the element at position 𝑖

• A.set(x, i) : writes element 𝑥 to position 𝑖

• A.size() : returns the length of the array (not always available)

For dynamic arrays (can change size):

• A.append(x) : appends element 𝑥 at the end

• A.deleteLast() : deletes last element

4

Abstract Data Types: Examples

Algorithms and Data StructuresFabian Kuhn

Dictionary: (also: maps, associative arrays)

• holds a collection of elements where each element is represented
by a unique key

Operations:

• create : creates an empty dictionary

• D.insert(key, value) : inserts a new (key,value)-pair
– If there already is an entry with the same key, the old entry is replaced

• D.find(key) : returns entry with key key
– If there is such an entry (returns some default value otherwise)

• D.delete(key) : deletes entry with key key

5

Abstract Data Types: Examples

Algorithms and Data StructuresFabian Kuhn

Dictionary:

Additional possible operations:

• D.minimum() : returns smallest key in the data structure

• D.maximum() : returns largest key in the data structure

• D.successor(key) : returns next larger key

• D.predecessor(key) : returns next smaller key

• D.getRange(k1, k2) : returns all entries with keys in the interval
[k1,k2]

6

Abstract Data Types: Examples

Algorithms and Data StructuresFabian Kuhn

Queue:

• Holds a collection (sequence) of elements

Operations:

• create : creates an empty queue

• Q.enqueue(x) : appends element 𝑥 at the end

• Q.dequeue() : returns element at front element and removes it

• Q.isEmpty() : Is the queue empty?

Is also called FIFO queue (FIFO = first in first out)

7

Abstract Data Types: Examples

headtail

enqueue

dequeue

Algorithms and Data StructuresFabian Kuhn

Stack:

• Holds a collection (sequence) of elements

Operations:

• create : creates an empty stack

• S.push(x) : puts an element x on the stack

• S.pop() : returns and deletes top element
of stack

• S.isEmpty() : Is the stack empty?

Is also called LIFO queue (LIFO = last in first out)

8

Abstract Data Types: Examples

23

4

12

41

S

42

top

push pop

Algorithms and Data StructuresFabian Kuhn

Heap / Priority Queue :

• Holds a collection of (key,value) pairs

Operations:

• create() : creates an empty heap

• H.insert(x, key) : inserts element x with key key

• H.getMin() : returns element with smallest key

• H.deleteMin() : deletes element with smallest key
– H.getMin() and H.deleteMin() have to be consistent

• H.decreaseKey(x, newkey) : If newkey is smaller than the current
key of x, the key of x is set to newkey

9

Abstract Data Types: Examples

Algorithms and Data StructuresFabian Kuhn

Union-Find / Disjoint Sets:

• Manages a partition of elements

Operationen:

• create() : creates an empty union-find data structure

• U.makeSet(x) : adds a set {𝑥} to the partition

• U.find(x) : returns the set containing element 𝑥

• U.union(S1, S2) : unites sets 𝑆1 and 𝑆2 to set 𝑆1 ∪ 𝑆2

10

Abstract Data Types: Examples

𝒙𝟏
𝒙𝟐

𝒙𝟑

𝒙𝟒

𝒙𝟓

𝒙𝟔

Algorithms and Data StructuresFabian Kuhn

Let us try to implement the stack data type

• Operations: create, push, pop, isEmpty

• Assumption: Stack only needs to be able to hold NMAX elements

Variables to store the state of the stack:

• 𝑠𝑡𝑎𝑐𝑘 : array of length NMAX

• 𝑠𝑖𝑧𝑒 : current number of elements in stack

create():

stack = new array of length NMAX

size = 0

11

Array Implementation of Stack

Algorithms and Data StructuresFabian Kuhn

isEmpty():

return (size == 0)

S.push(x):

if (size < NMAX):

stack[size] = x

size += 1

S.pop():
if (size == 0):

report error (or return default value)

else:

size -= 1

return stack[size]

12

Array Implementation of Stack

7 13 3 42

size

0 NMAX-1

Algorithms and Data StructuresFabian Kuhn

Runtime (complexity) of the operations:

• create: 𝑂(1)
– If we assume that memory can be allocated in 𝑂 1 time

• push: 𝑂(1)

• pop: 𝑂(1)

• isEmpty: 𝑂(1)

Disadvantages of the implementation:

• Memory usage (space complexity) : Θ(𝑁𝑀𝐴𝑋)
– always needs the same amount of memory, no matter how many elements

there are on the stack!

• The stack can only hold NMAX elements…

• We will see that both these things can be fixed…

13

Analysis: Array Implementation of Stack

Algorithms and Data StructuresFabian Kuhn

• Reversing a sequence:

• Undo operation for editors:
– Put description of (reversible) edit operations on the stack

• Program stack for function / method calls
– Remark: With a stack, it is possible to write down recursion explicitly

14

Stack : Applications

A, B, C

push(A), push(B), push(C), pop() → C, pop() → B, pop() → A

Arguments and local
variables of function 𝑓1

def 𝑓1(𝑥, 𝑦):
…
𝑓2 𝑧
…

Arguments and local
variables of function 𝑓2

def 𝑓2(𝑎):
…
𝑓2 𝑏
…

Arguments and local
variables of function 𝑓2

Algorithms and Data StructuresFabian Kuhn

Let us try to implement the queue data type

• Operations: create, enqueue, dequeue, isEmpty

• Assumption: Queue only needs to be able to hold NMAX elements

Variables to store the state of the queue:

• 𝑞𝑢𝑒𝑢𝑒 : array of length NMAX

• ℎ𝑒𝑎𝑑 : position of the first element (cyclic)
– if the queue is not empty.

• 𝑠𝑖𝑧𝑒 : number of elements in the queue

create:

queue = new array of length NMAX

head = 0
size = 0

15

Array Implementation of Queue

Algorithms and Data StructuresFabian Kuhn

• Q.dequeue() returns element at pos. head, if Q is not empty

• Q.enqueue(x) inserts element at pos. head + size

• Array is used cyclically:

16

Array Implementation of Queue

3 17 42 6 7

head
(points to first

occupied position)

size = 5

0 NMAX-1

Q

9 12 4 5 10 11 3 8

head size = 8

0 NMAX-1

Q

head+size-1

(head+size-1) mod NMAX

Algorithms and Data StructuresFabian Kuhn

S.isEmpty():
return (size == 0)

S.enqueue(x):

if (size < NMAX)
pos = (head + size) mod NMAX

queue[pos] = x

size += 1

S.dequeue():
if (size == 0)

report error (or return default value)
else
x = queue[head]

head = (head + 1) mod NMAX

size = size – 1

return x
17

Array Implementation of Queue

Algorithms and Data StructuresFabian Kuhn

Runtime (complexity) of the operations:

• create: 𝑂(1)
– If we assume that memory can be allocated in 𝑂 1 time

• enqueue : 𝑂(1)

• dequeue : 𝑂(1)

• isEmpty : 𝑂(1)

Disadvantages of the implementation:

• Memory usage (space complexity) : Θ(𝑁𝑀𝐴𝑋)
– always needs the same amount of memory, no matter how many elements

there are in the queue!

• The queue can only hold up to NMAX elements…

• We will see that both these things can be fixed …

18

Analysis: Array Implementation of Queue

Algorithms and Data StructuresFabian Kuhn

• Data structure to hold a list (sequence) of elements

19

Linked Lists

Array:

Linked list:

next next next next

list

⊥

Doubly linked list:

Algorithms and Data StructuresFabian Kuhn

• Class to describe
list elements

20

List Elements

Python:

class ListElement:

def __init__(self, key=0, data=None, next=None, prev=None):
self.key = key
self.data = data
self.next = next
self.prev = prev

key, data

next

prev

ListElement

Algorithms and Data StructuresFabian Kuhn

• Class to describe
list elements

21

List Elements

Java:

public class ListElement {

int/String/… key;
Object/… data;

ListElement next;
ListElement prev;

}

C++:

class ListElement {
public/private:

int/… key;
void*/… data;

ListElement* next;
ListElement* prev;

}

key, data

next

prev

ListElement

Algorithms and Data StructuresFabian Kuhn

Singly Linked List:

Doubly Linked List:

22

Linked Lists: Structure

31

next

14

next

10

next

6

next

31

next

prev

14

next

prev

10

next

prev

6

next

prev

first

null

first last

null

null

Python: None
C / C++: NULL
Java: null
others: nil
symbol: ⊥

Algorithms and Data StructuresFabian Kuhn

With singly linked lists, all operations in time 𝑶 𝟏

Stack:

• Elements can be added (push) und deleted (pop) at front

Queue:

• enqueue: add element at end (tail) of list

• dequeue: delete element at front (head) of list

23

Stack and FIFO Queue with Lists

31

next

14

next

10

next

6

next

top

null

31

next

14

next

10

next

6

next

head

null

tail

Algorithms and Data StructuresFabian Kuhn

Singly Linked List:

Goal: Find element with key 𝑥

current = first

while current != None and current.key != x:

current = current.next

Runtime: List of length 𝑛 : 𝑂(𝑛)

24

Search in Linked Lists

31

next

14

next

10

next

6

next

first

null

Algorithms and Data StructuresFabian Kuhn

Insert y after x:

y.next = x.next

x.next = y

Attention: Take care of special cases at beginning and end of list!
25

Insertion in Singly Linked Lists

31

next

14

next

10

next

6

next

first

null

x

42

next

y

Algorithms and Data StructuresFabian Kuhn

Insert y before x:

y.next = x

y.prev = x.prev

x.prev.next = y

x.prev = y

Attention: Take care of special cases at beginning and end of list!
26

Insertion in Doubly Linked Lists

x

31

next

prev

14

next

prev

10

next

prev

6

next

prev

first last

null

null

42

next

prev

y

Algorithms and Data StructuresFabian Kuhn

Delete element x:

Assumption: Predecessor element 𝑦 is given

y.next = x.next

• In C++ one would also need to free the memory used by element 𝑥,
in Python / Java, this is done by the garbage collector

Attention: Take care of special cases at beginning and end of list!
27

Deletion in Singly Linked Lists

31

next

14

next

10

next

6

next

first

null

xy

Algorithms and Data StructuresFabian Kuhn

Delete element x:

x.prev.next = x.next

x.next.prev = x.prev

Attention: Take care of special cases at beginning and end of list!
28

Deletion in Doubly Linked Lists

x

31

next

prev

14

next

prev

10

next

prev

6

next

prev

first last

null

null

Algorithms and Data StructuresFabian Kuhn

Assumption: List of length 𝑛

Search for element with key 𝑥: 𝑂 𝑛

Insertion of an element: 𝑂 1
• if reference to predecessor is given, otherwise 𝑂 𝑛

Deletion of an element: 𝑂 1
• if ref. to predecessor (singly linked lists) or to element itself (doubly linked lists)

is given, otherwise 𝑂 𝑛

Concatenation of two lists: 𝑂 1
• if last pointer to first list is given

Stack and Queue with linked lists:

• all operations in time 𝑂 1

• Size not restricted, memory usage 𝑂(𝑛)

29

Runtime List Operations

Algorithms and Data StructuresFabian Kuhn

Sentinel:

• A dummy element that form the start and end of the list

• list is accessed through nil.next instead of first

• replaces null pointer at the end of list

• empty list: sentinel points to itself (nil.next = nil)

• sentinel is just a part of the implementation and should
not be visible from outside

30

Lists with a Sentinel

31

next

14

next

10

next

6

next

-

next

nil

Algorithms and Data StructuresFabian Kuhn

Sentinel for doubly linked lists:

• list is accessed through nil.next, nil.prev instead of first, last

• replaces null pointers at start and end of list

• results in a cyclic doubly linked list

• empty list: nil.next = nil , nil.prev = nil

31

Lists with a Sentinel

31

next

prev

14

next

prev

10

next

prev

6

next

prev

-

next

prev

nil

Algorithms and Data StructuresFabian Kuhn

Advantages:

• Avoids special cases at start / end of list when inserting / deleting

• Code becomes simpler and possibly also faster

• Null pointer exceptions are avoided ...
– Not clear to what extent this improves robustness ...

Disadvantages:

• In case of many small lists, the additional memory useage for the
sentinels might become relevant (never asymptotically)

• Sentinels make most sense if they really simplify the code

32

Sentinel : Remarks

Algorithms and Data StructuresFabian Kuhn

Dictionary: (also: maps, associative arrays, symbol tables)

• holds a collection of elements where each element is represented
by a unique key

Operations:

• create : creates an empty dictionary

• D.insert(key, value) : inserts a new (key,value)-pair
– If there already is an entry with the same key, the old entry is replaced

• D.find(key) : returns entry with key key
– If there is such an entry (returns some default value otherwise)

• D.delete(key) : deletes entry with key key

33

Abstract Data Types: Dictionary

Algorithms and Data StructuresFabian Kuhn

• In a first phase, we deal with implementing the
basic operations insert, find, delete (und create)

Dictionary Examples:

• Dictionary (key: wort, value: definition / translation)

• Phone Book (key: name, value: phone number)

• DNS Server (key: URL, value: IP address)

• Python interpreter (key: variable name, value: value of variable)
Java/C++ compiler (key: variable name, value: type information)

In all these cases, it is particularly important to have
a fast find operation!

34

Dictionary

Algorithms and Data StructuresFabian Kuhn

Operations:

• create:
– creates an empty list

• D.insert(key, value):
– inserts element at front

– Assumption: There is no previous entry with key key

• D.find(key):
– traverse list sequentially

• D.delete(key):
– first search the list element with key key (as in find)

– delete element from the list

– For singly linked list, one has to stop as soon as current.next.key == key !

35

Dictionary with Linked Lists

Algorithms and Data StructuresFabian Kuhn

Runtimes:

create: 𝑂(1)

insert: 𝑂 1

• If one does not need to check if key is already present

find: 𝑂(𝑛)

• We potentially have to iterate over the whole list

delete: 𝑂 𝑛

• We potentially have to iterate over the whole list

Is this good?

• In particular find is very expensive!

36

Dictionary with Linked Lists

Algorithms and Data StructuresFabian Kuhn

Operations:

• create:
– allocates a new array of size NMAX

• D.insert(key, value):
– inserts new element at end (if there still is space)

– Assumption: There is no previous entry with key key

• D.find(key):
– Iterate over all the elements starting at front (or end)

• D.delete(key):
– first, search for key

– delete element from array, then:

Move all elements after the deleted element one position to the left!

37

Dictionary with an Array

Algorithms and Data StructuresFabian Kuhn

Runtimes:

create: 𝑂(1)

insert: 𝑂 1

find: 𝑂(𝑛)

• We potentially need to iterate over the whole array

delete: 𝑂 𝑛

• We potentially have to iterate over the whole array and might
need to copy Ω(𝑛) elements

Better ideas?

• In particular find is still very expensive!

38

Dictionary with an Array

Algorithms and Data StructuresFabian Kuhn

• Expensive operation for list / array, in particular find

• If (as soon as) the entries do not change too much, find
becomes the most important operation!

• Can we search for a given key faster if the entries in an array are
sorted by their keys?
– Example: Search phone number of a person in a phone book…

Ideas for searching 𝒙:

• We open the phone book approximately in the middle and check if
the name we look for in before or after that position.

39

Use a Sorted Array?

𝑦

Is 𝑦 < 𝑥 or is 𝑦 > 𝑥 or is 𝑦 = 𝑥?

Algorithms and Data StructuresFabian Kuhn

Use the divide-and-conquer idea!

Search for the number (the key) 19:

40

Binary Search

2 3 4 6 9 12 15 17 19 24 27 2916 2018

Algorithms and Data StructuresFabian Kuhn

Algorithm (array 𝑨 of length 𝒏, search for key 𝒙):

• Manage left and right boundary 𝑙 und 𝑟, s. t. (if 𝑥 is contained in 𝐴)

𝐴 𝑙 ≤ 𝑥 ≤ 𝐴[𝑟]

• At the beginning, we set 𝑙 = 0 and 𝑟 = 𝑛 − 1

• Go to the midele 𝑚 = Τ(𝑙 + 𝑟) 2
– If 𝐴 𝑚 = 𝑥 ⟹ 𝑥 found!

– If 𝐴 𝑚 < 𝑥 ⟹ 𝑥 is in right part ⟹ 𝑙 = 𝑚 + 1

– If 𝐴 𝑚 > 𝑥 ⟹ 𝑥 is in left part ⟹ 𝑙 = 𝑚 − 1

41

Binary Search

2 3 4 6 9 12 15 17 19 24 27 2916 2018

Algorithms and Data StructuresFabian Kuhn

Algorithm (array 𝑨 of length 𝒏, search for key 𝒙):

l = 0; r = n – 1;

while r > l do

m = (l + r) / 2;

if A[m] < x then

l = m + 1
else if A[m] > x then

r = m – 1

else

l = m; r = m

If key 𝑥 is in array, we have 𝐴 𝑙 = 𝑥 at end

42

Binary Search

2 3 4 6 9 12 15 17 19 24 27 2916 2018

Algorithms and Data StructuresFabian Kuhn

How can we verify this?

• Empirically: unit tests or more systematic tests…

• Formally?
– Correctness is (usually) even more important than performance!

Hoare Logic

• We only look at the basic ideas

• Precondition
– Condition that holds at the beginning (of a method / loop / …)

• Postcondition
– Condition that holds at the end (of a method / loop / …)

• Loop invariant
– Condition that holds at beginning and/or end of each loop iteration

43

Is the algorithm correct?

Algorithms and Data StructuresFabian Kuhn

l = 0; r = n – 1;

while r > l do

m = (l + r) / 2;

if A[m] < x then l = m + 1

else if A[m] > x then r = m – 1

else l = m; r = m

Precondition

• array is sorted, array is of length 𝑛

Postcondition

• If 𝑥 is contained in array, then 𝐴 𝑙 = 𝑥

Loop invariant

• If 𝑥 is contained in array, then 𝐴 𝑙 ≤ 𝑥 ≤ 𝐴[𝑟]

44

Is the algorithm correct?

Algorithms and Data StructuresFabian Kuhn 45

Is the algorithm correct?

loop invariant

Precondition

• array is sorted, array is of length 𝑛

l = 0; r = n – 1;

Loop invariant

• If 𝑥 is contained in array, then 𝐴 𝑙 ≤ 𝑥 ≤ 𝐴 𝑟

• Precondition and assignment for 𝑙 and 𝑟 loop invariant
– Loop invariant holds at beginning of first loop iteration

Postcondition

• If 𝑥 is contained in array, hen 𝐴 𝑙 = 𝑥

• Termination condition of while loop 𝑙 ≥ 𝑟 and thus 𝐴 𝑙 ≥ 𝐴[𝑟]

• If 𝑥 is contained in array, then the loop invariant and the fact that
𝐴 is sorted imply that 𝐴 𝑙 = 𝐴[𝑟] and thus 𝐴 𝑙 = 𝑥

Algorithms and Data StructuresFabian Kuhn

l = 0; r = n – 1;

while r > l do

m = (l + r) / 2;

if A[m] < x then l = m + 1

else if A[m] > x then r = m – 1

else l = m; r = m

Schleifeninvariante

• If 𝑥 is contained in array, then 𝐴 𝑙 ≤ 𝑥 ≤ 𝐴[𝑟]
– The loop invariant holds at the beginning of the loop, it can only be

invalidated if we change the variables 𝑙 and 𝑟

– If we set 𝑙 = 𝑚 + 1, we know that 𝐴 𝑚 < 𝑥; therefore, we afterwards
have 𝐴 𝑚 + 1 ≤ 𝑥 if 𝑥 is contained in 𝐴.

– Analogously, if we set 𝑟 = 𝑚 − 1, we know that 𝐴 𝑚 > 𝑥; therefore, we
afterwards have 𝑥 ≤ 𝐴 𝑚 − 1 if 𝑥 is contained in 𝐴.

46

Is the algorithm correct?

Algorithms and Data StructuresFabian Kuhn

l = 0; r = n – 1;

while r > l do

m = (l + r) / 2;

if A[m] < x then l = m + 1

else if A[m] > x then r = m – 1

else l = m; r = m

• Change of number of elements (𝑟 − 𝑙 + 1) per iteration?

– 𝑙 = 𝑚 + 1:

𝑟 − 𝑚 + 1 + 1 ≤ 𝑟 −
𝑙 + 𝑟

2
+
1

2
+ 1 =

𝑟 − 𝑙 + 1

2

– 𝑟 = 𝑚 − 1:

𝑚− 1 − 𝑙 + 1 ≤
𝑙 + 𝑟

2
− 1 − 𝑙 + 1 =

𝑟 − 𝑙

2
<
𝑟 − 𝑙 + 1

2

– Otherwise 𝑥 is found and 𝑟 − 𝑙 + 1 becomes 1

47

Does the algorithm terminate?

Algorithms and Data StructuresFabian Kuhn

Does the algorithm terminate?

• The number of active elements is at least halved in each iteration

• The algorithm terminates!

Runtime?

𝑇 𝑛 ≤ 𝑇 ൗ𝑛 2 + 𝑐, 𝑇 1 ≤ 𝑐

48

Runtime

Algorithms and Data StructuresFabian Kuhn

The algorithm terminates in time 𝑂(log 𝑛).

49

Runtime Binary Search

Algorithms and Data StructuresFabian Kuhn

Operations:

• create:
– allocates new array of size NMAX

• D.find(key):
– search for key by using binary search

• D.insert(key, value):
– Search for key and insert element at the right position

– Insertion: All elements after the insertion have to move one to the right!

• D.delete(key):
– First search for key and remove the respective element

– Deletion: All elements after the deletion have to move one to the left!

50

Dictionary with Sorted Array

Algorithms and Data StructuresFabian Kuhn

Runtimes:

create:𝑂(1)

insert: 𝑂(𝑛)

find: 𝑂(log 𝑛)

delete: 𝑂(𝑛)

Can we make all operations fast?

• and find even faster?

51

Dictionary with Sorted Array

