

Algorithms and Data Structures Winter Term 2021/2022 Sample Solution Exercise Sheet 9

Exercise 1: Minimum Spanning Trees

Let G = (V, E, w) be an *undirected*, *connected*, *weighted* graph with pairwise distinct edge weights.

(a) Show that G has a *unique* minimum spanning tree.

(b) Show that the minimum spanning tree T' of G is obtained by the following construction:

Start with $T' = \emptyset$. For each cut in G, add the lightest cut edge to T'.

Sample Solution

(a) Assume, for a contradiction, that there are two different MSTs, $T_1 = (V, E_1)$ and $T_2 = (V, E_2)$, where $E_1, E_2 \subset E$. Since T_1 and T_2 are different, then there are edges that are in T_1 but not in T_2 , and similarly, there are edges in T_2 but not in T_1 . Let $D_1 = E_1 \setminus E_2$, and let $D_2 = E_2 \setminus E_1$. Let $D = D_1 \cup D_2$ be the set containing all edges that are in one of the two trees, but not in both. Consider the edge with the smallest weight in D, and let's call it e (note that, since G has pairwise distinct edge weights, then e is unique). By construction of D, either $e \in T_1$ or $e \in T_2$. Without loss of generality, assume that $e \in T_1$ (and hence $e \notin T_2$). In the following we show that, if we add e to T_2 and then remove some other edge, then we get a new tree with smaller total weight, contradicting the fact that T_2 is an MST.

Let us add the edge e to T_2 . Since $e \notin T_2$, and since T_2 is a spanning tree, then, by adding e to T_2 , we must close a cycle. In this cycle, there must be an edge $e' \neq e$ that is not in T_1 , otherwise T_1 would contain a cycle and hence it would not even be a tree. Therefore, we have that $e' \in T_2$ and $e' \notin T_1$, implying that $e' \in D_2$. Since edge e has the minimum weight among all edges in D, then w(e) < w(e'). Starting from T_2 we create a new tree T'_2 , where we remove e' from T_2 and then we add e to T_2 , that is, we create the tree $T'_2 = (V, E'_2)$ where $E'_2 = (E_2 \setminus \{e'\}) \cup \{e\}$. Notice that T'_2 is still a spanning tree: in fact, by adding e to T_2 we created a cycle, and by removing e' from T_2 we are breaking that cycle. But now, by construction, we get that $w(T'_2) < w(T_2)$, but this is in contradiction with the fact that T_2 is an MST.

(b) Let T be the MST of G and T' the set containing the lightest cut edges.

 $T' \subseteq T$: Let $s \in T'$, i.e., s is the lightest cut edge of a cut $(S, V \setminus S)$ in G. Let e be the edge of T connecting S and $V \setminus S$. If $e \neq s$, then w(s) < w(e) and the spanning tree $(T \setminus \{e\}) \cup \{s\}$ would have a smaller weight than T, contradicting that T is an MST. Hence we have e = s and thus $s \in T$.

 $T \subseteq T'$: Let $e \in T$. The graph $T \setminus \{e\}$ has two connected components which define a cut in G. With an exchange argument as above one can show that e is the (unique) lightest cut edge of this cut, i.e., we have $e \in T'$.

Exercise 2: Travelling Salesperson Problem

Let $p_1, \ldots, p_n \in \mathbb{R}^2$ be points in the euclidean plane. Point p_i represents the position of city *i*. The distance between cities *i* and *j* is defined as the euclidean distance between the points p_i and p_j . A *tour* is a sequence of cities (i_1, \ldots, i_n) such that each city is visited exactly once (formally, it is a permutation of $\{1, \ldots, n\}$). The task is to find a tour that minimizes the travelled distance. This problem is probably costly to solve.¹ We therefore aim for a tour that is at most twice as long as a minimal tour.

We can model this as a graph problem, using the graph G = (V, E, w) with $V = \{p_1, \ldots, p_n\}$ and $w(p_i, p_j) := \|p_i - p_j\|_2$. Hence, G is undirected and complete and fulfills the triangle inequality, i.e., for any nodes x, y, z we have $w(\{x, z\}) \le w(\{x, y\}) + w(\{y, z\})$. We aim for a tour (i_1, \ldots, i_n) such that $w(p_{i_n}, p_{i_1}) + \sum_{j=1}^{n-1} w(p_{i_j}, p_{i_{j+1}})$ is small.

Let G be a weighted, undirected, complete graph that fulfills the triangle inequality. Show that the sequence of nodes obtained by a pre-order traversal of a minimum spanning tree (starting at an arbitrary root) is a tour that is at most twice as long as a minimal tour.

Sample Solution

Let $R = (i_1, \ldots, i_n)$ be a minimal tour and $w(R) := w(p_{i_n}, p_{i_1}) + \sum_{j=1}^{n-1} w(p_{i_j}, p_{i_{j+1}})$. Let T be an MST, $w(T) := \sum_{e \in T} w(e)$ its weight and \mathcal{P}_T its pre-order sequence of nodes. As the graph is complete, \mathcal{P}_T is also a tour.

We add points to \mathcal{P}_T as follows: If two subsequent nodes u and v are not connected in T by a tree edge, we add between u and v all nodes on the shortest path from u to v in T (these are all nodes from u to the first common ancestor w and from there to v). We write \mathcal{P}'_T for the sequence that we obtain (this is formally not a tour as points are visited more than once).

In \mathcal{P}'_T , two subsequent nodes are neighbors in T, so we can consider this sequence as a sequence of edges in T. Each edge from T is contained in \mathcal{P}'_T exactly twice (if you go from the last point back to the root). Thus we have $w(\mathcal{P}'_T) = 2 \sum_{e \in T} w(e)$. The triangle inequality implies $w(\mathcal{P}_T) \leq w(\mathcal{P}'_T)$ and hence $w(\mathcal{P}_T) \leq 2 \sum_{e \in T} w(e)$.

The minimal tour R defines a spanning tree T_R by taking the edges between subsequent nodes in R. As T is the minimum spanning tree we have $w(T) \leq w(T_R) \leq w(T_R) + w(p_{i_n}, p_{i_1}) = w(R)$ and hence $w(\mathcal{P}_T) \leq 2 \cdot w(R)$.

Remark: The above argumentation also works for the post-order traversal. However, if you want the tour to start at a predefined point, it is easiest to use this point as the root of a pre-order traversal.

¹The Travelling Salesperson Problem is in the class of \mathcal{NP} -complete problems for which it is assumed that no algorithm with polynomial runtime exists. However, this has not been proven yet.