Exercise 1: Fibonacci Heap - Operations

Consider the following Fibonacci heap with marked nodes shown in gray and two dedicated nodes u, v. Give the state of the Fibonacci heap after conducting the operation $\text{Decrease-Key}(v, 8)$. Then conduct $\text{Decrease-Key}(u, 5)$ on the resulting Fibonacci heap and give the state of it.

Exercise 2: Fibonacci Heap - Questions

Suppose we “simplify” Fibonacci heaps such that we do not mark any nodes that have lost a child and consequentially also do not cut marked parents of a node that needs to be cut out due to a decrease-key-operation. Is the amortized running time

(a) ... of the decrease-key-operation still $O(1)$? (2 Points)

(b) ... of the delete-min-operation still $O(\log n)$? (4 Points)

Explain your answers.

Exercise 3: Fibonacci Heap - Delete

We want to augment the Fibonacci heap data structure by adding an operation $\text{delete}(v)$ to delete a node v (given by a direct pointer). The operation should have an amortized running time of $O(\log n)$. Describe the operation $\text{delete}(v)$ in sufficient detail and prove the correctness and amortized running time.

Remark: You can use the same potential function as for the standard Fibonacci heap data structure. Note however that after conducting $\text{delete}(v)$ the Fibonacci heap must still be a list of heaps with maximum rank $D(n) \in O(\log n)$ and with a dedicated pointer to the minimum key.