Chapter 10
Parallel Algorithms

Algorithm Theory
WS 2019/20

Fabian Kuhn

UNI

FREIBURG

Parallel Computations

UNI
FREIBURG

T ,: time to perform comp. with p procs

=

* Lower Bounds:

) 1
 Parallelism: —

o0

e

— maximum possible speed-up

* Linear Speed-up:

Tp_®
T, - (p)

Algorithm Theory, WS 2019/20 Fabian Kuhn

Brent’s Theorem

Brent’s Theorem: On p processors, a parallel computation can be
performed in time

T{—T,
T, < +T.
— p
Proof: z'affm”:“xj zlz
* Greedy scheduling achieves this... Y pest- eacte

* Hoperations scheduled with oo processors in round i: x;

Algorithm Theory, WS 2019/20 Fabian Kuhn 3

UNI
f

FREIBURG

PRAM

UNI
f

FREIBURG

 Parallel version of RAM model
* p processors, shared random access memory

* Basic operations / access to shared memory cost 1
* Processor operations are synchronized

* Focus on parallelizing computation rather than cost of
communication, locality, faults, asynchrony, ...

Algorithm Theory, WS 2019/20 Fabian Kuhn 4

PRAM

UNI
f

FREIBURG

Back to the PRAM:
* Shared random access memory, synchronous computation steps
* The PRAM model comes in variants...

EREW (exclusive read, exclusive write):
* Concurrent memory access by multiple processors is not allowed

* |f two or more processors try to read from or write to the same
memory cell concurrently, the behavior is not specified

CREW (concurrent read, exclusive write):
 Reading the same memory cell concurrently is OK

 Two concurrent writes to the same cell lead to unspecified
behavior

* This is the first variant that was considered (already in the 70s)

Algorithm Theory, WS 2019/20 Fabian Kuhn 5

PRAM

UNI
FREIBURG

The PRAM model comes in variants...

CRCW (concurrent read, concurrent write):
* Concurrent reads and writes are both OK
e Behavior of concurrent writes has to specified

— Weak CRCW: concurrent write only OK if all processors write 0 <—

— Common-mode CRCW: all processors need to write the same value
— Arbitrary-winner CRCW: adversary picks one of the values

— Priority CRCW: value of processor with highest ID is written

— Strong CRCW: largest (or smallest) value is written «——

—

 The given models are ordered in strength:

weak < common-mode < arbitrary-winner < priority < strong

Algorithm Theory, WS 2019/20 Fabian Kuhn 6

Some Relations Between PRAM Models _

UNI
FREIBURG

Theorem: A parallel computation that can be performed in time ¢,
using p proc. on a strong CRCW machine, can also be performed in
time O(tlogp) using p processors on an EREW machine.

—_—

e Each (parallel) step on the CRCW machine can be simulated by
O(logp) steps on an EREW machine

Theorem: A parallel computation that can be performed in time ¢,
using p probabilistic processors on a strong CRCW machine, can also
be performed in expected time O(t log p) using O(p/logp)
processors on an arbitrary-winner CRCW machine. o

e The same simulation turns out more efficient in this case

Algorithm Theory, WS 2019/20 Fabian Kuhn 7

Some Relations Between PRAM Models _

FREIBURG

UNI

Theorem: A computation that can be performed in time ¢, using p
processors on a strong CRCW machine, can also be performed in

time O_(_Q using 0(122) processors on a weak CRCW machine
Proof:

* Strong: largest value wins, weak: only concurrently writing 0 is OK
& POC. L Wands 1o wote value x T wom. @l ¢ {,.—;\/ V=X, @, =C
'\,‘1630”3

PoRses ¢ %“6 CRCW; \ -, v —
weale CQC(J' ™ ﬁJ&\hM! qzls gﬂ Q\N'J‘7 f“}' (:/'))/ ‘,') e{‘/m,(’;/ ;<:)
SLidmal wam. alls

V: ‘{‘{ "",?3 : g: , V"' a; (a“ \uA‘u“\:'&(Aw &" O)

Algorithm Theory, WS 2019/20 Fabian Kuhn 8

Some Relations Between PRAM Models _

UNI
FREIBURG

Theorem: A computation that can be performed in time t, using p
processors on a strong CRCW machine, can also be performed in
time O(t) using O(pz) processors on a weak CRCW machine

Proof:

* Strong: largest value wins, weak: only concurrently writing 0 is OK
?mcl wanls 39 welex do wlc - &;(/ v,=x, 4. =C

e

Vi @, reads boGviv,a a0 (o)

(,)[l/)
—

‘(Q '&:‘Q'):\ Aud a('=05 ‘H&V\

1(V; 2 Vj Mw\ -€,=O ?osle(a becanse coucunent
olce Q?___O wﬁks&fﬁ@a« oK .

me———

"\DA)C. (wr‘.les v) CQ“ a. &= ,g;:-‘

—

Algorithm Theory, WS 2019/20 Fabian Kuhn 9

UNI
f

FREIBURG

Computing the Maximum

Given: n values
Goal: find the maximum value

Observation: The maximum can be computed in parallel by using a
binary tree.

de
PR R B @R D@

e

\ / _/ \ / \
2 L [l & T - o)

N \/TO(E%Q

o o) o2+ &
‘\ / Vaar W‘“F as (0“5 as
(10} = O(oz)

Algorithm Theory, WS 2019/20 Fabian Kuhn 10

Computing the Maximum = —n

FREIBURG

H
|
UNI

Observation: On a strong CRCW machine, the maximum of an
values can be computed in O(1) time using n processors

e Each value is concurrently written to the same memory cell

Lemma: On a weak CRCW machine, the maximum of n integers
between 1 and /n can be computed in time 0 (1) using 0(n) proc.

Proof:

* We have y/n memory cells fi, ..., f, 5 for the possible values

* Initialize all f; =1

* Forthenvalues x4, ..., Xy, processorl sets ij =0
— Since only zeroes are written, concurrent writes are OK
* Now, f; = 0 iff value i occurs at least once
* Strong CRCW machine: max. value in time 0 (1) w. 0(y/n) proc.
* Weak CRCW machine: time O(1) using O(n) proc. (prev. lemma)

Algorithm Theory, WS 2019/20 Fabian Kuhn 11

UNI

Computing the Maximum s <% -~ =%

FREIBURG

Theorem: If each value can be represented using O (log n) bits, the
maximum of n (integer) values can be computed in time O(1) using

O (n) processors on a weak CRCW machine.
2y S W S w—
Proof: bl

log, n

* First look at highest order bits

* The maximum value also has the maximum among those bits
* There are only \/n possibilities for these bits

log, n

* max. of highest order bits can be computed in O(1) time

log, n

* For those with largest highest order bits, continue with

log, n

next block of bits, ...

Algorithm Theory, WS 2019/20 Fabian Kuhn 12

Prefix Sums

UNI
FREIBURG

* The following works for any associative binary operator @:

associativity: (a®b)Dc = aP(bDc)

All-Prefix-Sums: Given a sequence of n values a4, ..., a,,, the all-
prefix-sums operation w.r.t. @ returns the sequence of prefix sums:

S1,S2,...,S, = a1, a1Da,,a;Da,Das,...,a;D - Da,

* Can be computed efficiently in parallel and turns out to be an
important building block for designing parallel algorithms

Example: Operator: +, input: a4, ...,ag =3, 1, 7i 0,4,1,6,3
S1y 0y Sg = 3,9, 1,11, 1S 6,22, 25

Algorithm Theory, WS 2019/20 Fabian Kuhn 13

Computing the Sum

UNI
f

FREIBURG

* Let'sfirstlookats,, = a;®Da,d - Da,

* Parallelize using a binary tree:

Algorithm Theory, WS 2019/20

Fabian Kuhn

14

Computing the Sum

UNI

Lemma: The sum s, = a;Da,® --- Da,, can be computed in
time O(logn) on an EREW PRAM. The total number of
operations (total work) is O (n).

Proof:

Corollary: The sum s,, can be computed in time O(log n) using
©(n/logn) processors on an EREW PRAM.

Proof:
* Follows from Brent’s theorem (T; = O0(n), T, = O(logn))

Algorithm Theory, WS 2019/20 Fabian Kuhn 15

FREIBURG

UNI

Getting The Prefix Sums

FREIBURG

* Instead of computing the sequence sy, sy, ..., S, let’s compute
71, o,y = 0,81,85, ..., 51 (0: neutral element w.r.t.@)

T, ey =0, aj, aba,,...,a;D - Da,,_1

* Together with s,,, this gives all prefix sums
* Prefixsumr; =s;_1 =a,D - Da;_q:

©)
© ©

© ©. (@) ©

@ (& @ (@ @ (@ @ (@
@ @ @ ©® W0 @ O W @ W) wWe e

ri14

Algorithm Theory, WS 2019/20 Fabian Kuhn (513) 16

UNI

Getting The Prefix Sums

FREIBURG

Claim: The prefixsumr; = a,® --- Da;_4 is the sum of all the
leaves in the left sub-tree of ancestor u of the leaf v containing q;

such that v is in the right sub-tree of u.

Algorithm Theory, WS 2019/20 Fabian Kuhn 17

UNI

Computing The Prefix Sums

FREIBURG

For each node v of the binary tree, define r(v) as follows:

* r(v)isthe sum of the values a; at the leaves in all the left sub-
trees of ancestors u of v such that v is in the right sub-tree of u.

For a leaf node v holding value a;: r(v) = r; = s;_4

W
» For the root node: r(root) = 0 >
AN
for all other nodes v: { v is the right child of u:
o (u has left child w)

v is the left child of u:

r(v) =r(uw) +S

r(v) =r(u) = =
(S: sum of values in
sub-tree of w)

Algorithm Theory, WS 2019/20 Fabian Kuhn 18

UNI

Computing The Prefix Sums

FREIBURG

* leaf node v holdingvalue a;: r(v) =1; = 5;_4
* root node: r(root) =0

* Node v is the left child of u: r(v) = r(u)

* Node v is the right child of u: r(v) = r(u) @

— Where: S = sum of values in left sub-tree of u

Algorithm to compute values r(v):
1. Compute sum of values in each sub-tree (bottom-up)
— Can be done in parallel time O(logn) with O(n) total work

2. Compute values r(v) top-down from root to leaves:

— To compute the value r(v), only r(u) of the parent u and the sum of the
left sibling (if v is a right child) are needed

— Can be done in parallel time O(logn) with O(n) total work

—_—

Algorithm Theory, WS 2019/20 Fabian Kuhn 19

Example

UNI
FREIBURG

1. Compute sums of all sub-trees
— Bottom-up (level-wise in parallel, starting at the leaves)

2. Compute values r(v)

— Top-down (starting at the root)

0
52
0 21
@t 3D
0 10 2 34
(19) (1Y) (13 (18
0 11 10 19 21 30 34 43
OIS) (2 () ©

34 38 43 50

ONOIOESEONOIONONONOIONONBONOIONO
0 11

3 11 10 16 19 21 21 29 30 31

Algorithm Theory, WS 2019/20 Fabian Kuhn

20

Computing Prefix Sums

UNI
FREIBURG

Theorem: Given a sequence a4, ..., a, of n values, all prefix sums
Si = a1 - Da; (for 1 < i < n)can be computed in time O(logn)
using O(n/logn) processors on an|EREW PRAM/

Proof:

* Computing the sums of all sub-trees can be done in parallel in
time O(logn) using O(n) total operations.

* The same is true for the top-down step to compute the r(v)

 The theorem then follows from Brent’s theorem:

T
T, = 0(n), To =0(ogn) = T, <Ty + 1

- p

Remark: This can be adapted to other parallel models and to
different ways of storing the value (e.g., array or list)

Algorithm Theory, WS 2019/20 Fabian Kuhn 21

Parallel Quicksort

UNI

FREIBURG

* Key challenge: parallelize partition

pivot

51418 8 |19(21| 3 |1 |25/17/11| 4 (20|10(26| 2

13

23

16

partition

5(14/8 | 3|1(11/4 |10/ 2|9 |13/16/18/19|21|25

17

20

26

23

* How can we do this in parallel?
* For now, let’s just care about the values < pivot
 What are their new positions

Algorithm Theory, WS 2019/20 Fabian Kuhn

22

Using Prefix Sums

UNI
FREIBURG

* Goal: Determine positions of values < pivot after partition .

pivot
5(14|18| 8 (1921 3 |1 |25|17|11| 4 |20/10(26| 2 | 9 |13|23|16
|
— 1111010 1 1/1/1/0(1
T, =0W)
@ preflxsums T, _O(onu)

5 9110/111/11/12

‘

2 — = -

b) 1

Z / partition
(/4

11/ 4 (10| 2 | 9 |{13|16/18|19|21|25|17(20|26|23

| IN
r
w

| < dp

b
N
o)
w
b

Algorithm Theory, WS 2019/20 Fabian Kuhn 23

Partition Using Prefix Sums

UNI
f

FREIBURG

* The positions of the entries > pivot can be determined in the
same way

* Prefixsums:T; = 0(n), T, = 0(logn)
* Remaining computations: T; = 0(n), T, = 0(1)

* Overall: T, = 0(n), T, = O(logn)

Lemma: The partitioning of quicksort can be carried out in
parallel in time O(logn) using O (@) processors.

Proof:

By Brent’s theorem: T, < % + T

Algorithm Theory, WS 2019/20 Fabian Kuhn 24

UNI

Applying to Quicksort

FREIBURG

Theorem: On an EREW PRAM, using p processors, randomized
quicksort can be executed in time T, (in expectation and with
high probability), where

nlogn
Tp=0< pg +10g2n).

Proof:

T‘ = D(IA &8“7 y Too';o(&coz”\?

Remark:

 We get optimal (linear) speed-up w.r.t. to the sequential
algorithm for all p = O(n/logn).

Algorithm Theory, WS 2019/20 Fabian Kuhn 25

Other Applications of Prefix Sums

UNI
f

FREIBURG

* Prefix sums are a very powerful primitive to design parallel
algorithms.
— Particularly also by using other operators than “+”

Example Applications:

* Lexical comparison of strings

* Add multi-precision numbers

e Evaluate polynomials

* Solve recurrences

* Radix sort / quick sort

e Search for regular expressions

* Implement some tree operations

Algorithm Theory, WS 2019/20 Fabian Kuhn 26

