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Representation of Polynomials

Coefficient Representation:

• Polynomial of degree 𝑛 − 1 defined by coefficients 𝑎0, … , 𝑎𝑛−1:

𝑝 𝑥 = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥
2 +⋯+ 𝑎𝑛−1𝑥

𝑛−1

Point-value Representation:

• Polynomial 𝑝 𝑥 of degree 𝑛 − 1 is given by 𝑛 point-value pairs:

𝑝 = 𝑥0, 𝑝 𝑥0 , 𝑥1, 𝑝 𝑥1 , … , 𝑥𝑛−1, 𝑝 𝑥𝑛−1

where 𝑥𝑖 ≠ 𝑥𝑗 for 𝑖 ≠ 𝑗.

• Example: The polynomial

𝑝 𝑥 = 3𝑥3 − 15𝑥2 + 18𝑥 = 3𝑥 𝑥 − 2 𝑥 − 3

is uniquely defined by the four point-value pairs 
0,0 , 1,6 , 2,0 , 3,0 .
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Operations: Coefficient Representation

𝒑 𝒙 = 𝒂𝒏−𝟏𝒙
𝒏−𝟏 +⋯+ 𝒂𝟎, 𝒒 𝒙 = 𝒃𝒏−𝟏𝒙

𝒏−𝟏 +⋯+ 𝒃𝟎

Evaluation: Horner’s method: Time 𝑂 𝑛

Addition:
𝑝 𝑥 + 𝑞 𝑥 = 𝑎𝑛−1 + 𝑏𝑛−1 𝑥𝑛−1 +⋯+ (𝑎0 + 𝑏0)

• Time: 𝑂(𝑛)

Multiplication:

𝑝 𝑥 ⋅ 𝑞 𝑥 = 𝑐2𝑛−2𝑥
2𝑛−2 +⋯+ 𝑐0, where 𝑐𝑖 =෍

𝑗=0

𝑖

𝑎𝑗𝑏𝑖−𝑗

• Naïve solution: Need to compute product 𝑎𝑖𝑏𝑗 for all 0 ≤ 𝑖, 𝑗 ≤ 𝑛

• Time: Naïve alg. 𝑂(𝑛2) Karatsuba Alg. 𝑂 𝑛1.58496…
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Operations: Point-Value Representation

𝒑 = 𝒙𝟎, 𝒑 𝒙𝟎 , … , 𝒙𝒏−𝟏, 𝒑 𝒙𝒏−𝟏
𝒒 = 𝒙𝟎, 𝒒 𝒙𝟎 , … , 𝒙𝒏−𝟏, 𝒒 𝒙𝒏−𝟏

• Note: We use the same points 𝒙𝟎, … , 𝒙𝒏−𝟏 for both polynomials.

Addition:

𝑝 + 𝑞 = 𝑥0, 𝑝 𝑥0 + 𝑞 𝑥0 , … , 𝑥𝑛−1, 𝑝 𝑥𝑛−1 + 𝑞 𝑥𝑛−1

• Time: 𝑂(𝑛)

Multiplication:

𝑝 ⋅ 𝑞 = 𝑥0, 𝑝 𝑥0 ⋅ 𝑞 𝑥0 , … , 𝑥2𝑛−2, 𝑝 𝑥2𝑛−2 ⋅ 𝑞 𝑥2𝑛−2

• Time: 𝑂(𝑛)

• Remark: Need both polynomials at (the same) 2𝑛 − 1 points.

Evaluation: Polynomial interpolation can be done in 𝑂 𝑛2
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Operations on Polynomials

Cost depending on representation:

Coefficient Point-Value

Evaluation 𝑶(𝒏) 𝑶 𝒏𝟐

Addition 𝑶 𝒏 𝑶 𝒏

Multiplication 𝑶(𝒏𝟏.𝟓𝟖) 𝑶 𝒏

default
representation

Can we 
improve this?
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Faster Polynomial Multiplication?

Multiplication is fast when using the point-value representation

Idea to compute 𝑝 𝑥 ⋅ 𝑞(𝑥) (for polynomials of degree < 𝑛):

𝑝, 𝑞 of degree 𝑛 − 1, 𝑛 coefficients

2 × 2𝑛 point-value pairs 𝑥𝑖 , 𝑝 𝑥𝑖 and 𝑥𝑖 , 𝑞 𝑥𝑖

2𝑛 point-value pairs 𝑥𝑖 , 𝑝 𝑥𝑖 𝑞 𝑥𝑖

𝑝 𝑥 𝑞(𝑥) of degree 2𝑛 − 2, 2𝑛 − 1 coefficients

Evaluation at points 𝑥0, 𝑥1, … , 𝑥2𝑛−2

Point-wise multiplication

Interpolation

Time: 𝑂(𝑛)

We will consider
this first.
Remark: We can
freely choose 
the points.
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Coefficients to Point-Value Representation

Given: Polynomial 𝑝 𝑥 by the coefficient vector 𝑎0, 𝑎1, … , 𝑎𝑁−1
Goal:   Compute 𝑝 𝑥 for all 𝑥 in a given set  𝑿

– Where 𝑋 is of size 𝑋 = 𝑁

– Assume that 𝑁 is a power of 2

Divide and Conquer Approach

• Divide 𝑝 𝑥 of degree 𝑁 − 1 (𝑁 is even) into 2 polynomials of 
degree Τ𝑁 2− 1 differently than in Karatsuba’s algorithm

• 𝑝0 𝑦 = 𝑎0 + 𝑎2𝑦 + 𝑎4𝑦
2 +⋯+ 𝑎𝑁−2𝑦

Τ𝑁 2−1 (even coeff.)

𝑝1 𝑦 = 𝑎1 + 𝑎3𝑦 + 𝑎5𝑦
2 +⋯+ 𝑎𝑁−1𝑦

Τ𝑁 2−1 (odd coeff.)

𝑁 ≥ 2𝑛 − 1

We call the variable 𝑦 because we will 
not plug in 𝑥 into 𝑝0 and 𝑝1

We will fix 𝑋 later.
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Coefficients to Point-Value Representation

Goal:   Compute 𝑝 𝑥 for all 𝑥 in a given set 𝑋 of size 𝑋 = 𝑁

• Divide 𝑝 𝑥 of degr. 𝑁 − 1 into 2 polynomials of degr. Τ𝑁 2− 1

𝑝0 𝑦 = 𝑎0 + 𝑎2𝑦 + 𝑎4𝑦
2 +⋯+ 𝑎𝑁−2𝑦

Τ𝑁 2−1 (even coeff.)

𝑝1 𝑦 = 𝑎1 + 𝑎3𝑦 + 𝑎5𝑦
2 +⋯+ 𝑎𝑁−1𝑦

Τ𝑁 2−1 (odd coeff.)

Let’s first look at the “combine” step:

• We need to compute 𝑝 𝑥 for all 𝑥 ∈ 𝑋 after recursive calls for 
polynomials 𝑝0 and 𝑝1:

• Plug 𝑦 = 𝑥2 into 𝑝0 𝑦 and 𝑝1 𝑦 :

𝑝0 𝑥2 = 𝑎0 + 𝑎2𝑥
2 + 𝑎4𝑥

4 +⋯+ 𝑎𝑁−2𝑥
𝑁−2

𝑝1 𝑥2 = 𝑎1 + 𝑎3𝑥
2 + 𝑎5𝑥

4 +⋯+ 𝑎𝑁−1𝑥
𝑁−2

𝒑 𝒙 = 𝒑𝟎 𝒙𝟐 + 𝒙 ⋅ 𝒑𝟏 𝒙𝟐
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Coefficients to Point-Value Representation

Goal:   Compute 𝑝 𝑥 for all 𝑥 in a given set 𝑋 of size 𝑋 = 𝑁

• Divide 𝑝 𝑥 of degr. 𝑁 − 1 into 2 polynomials of degr. Τ𝑁 2− 1

𝑝0 𝑦 = 𝑎0 + 𝑎2𝑦 + 𝑎4𝑦
2 +⋯+ 𝑎𝑁−2𝑦

Τ𝑁 2−1 (even coeff.)

𝑝1 𝑦 = 𝑎1 + 𝑎3𝑦 + 𝑎5𝑦
2 +⋯+ 𝑎𝑁−1𝑦

Τ𝑁 2−1 (odd coeff.)

Let’s first look at the “combine” step:

∀𝑥 ∈ 𝑋 ∶ 𝑝 𝑥 = 𝑝0 𝑥2 + 𝑥 ⋅ 𝑝1 𝑥2

• Goal: recursively compute 𝑝0 𝑦 and 𝑝1(𝑦) for all 𝑦 ∈ 𝑋2

– Where 𝑋2 ≔ 𝑥2 ∶ 𝑥 ∈ 𝑋

• Generally, we have 𝑋2 = |𝑋|



Algorithm Theory Fabian Kuhn 10

Analysis

Let’s get a recurrence recurrence for the given algorithm:

Time for polynomial of degree 𝑵 with set 𝑿: 𝑻 𝑵, 𝑿

𝑇 𝑁, 𝑋 = 2 ⋅ 𝑇 ൗ𝑁 2 , 𝑋
2 + 𝑂 𝑁 + 𝑋

Assume that 𝑿𝟐 = 𝑿 = 𝑵:

𝑇 𝑁,𝑁 = 2 ⋅ 𝑇 ൗ𝑁 2 ,𝑁 + 𝑂 𝑁 = ⋯ = 𝑁 ⋅ 𝑇 1,𝑁 + 𝑂 𝑁

𝑇 1,𝑁 = 𝑂(𝑁)

Therefore, we get 𝑇 𝑁, 𝑋 = 𝑂 𝑁2 .

• We need 𝑋2 < 𝑋 to get a faster algorithm!
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Faster Algorithm?

In order to have a faster algorithm, we need 𝑋2 < |𝑋|:

• 𝑋2 < 𝑋 if 𝑋 contains values 𝑥, 𝑥′ such that 𝑥2 = 𝑥′2:

𝑋 = −1,+1 ⟹ 𝑋2 = +1

• We also need 𝑋2 2
= 𝑋4 < 𝑋2 :

– Can we get a set 𝑌 of size 4 such that 𝑌2 = −1,+1 ?

• Complex numbers ℂ:
– Define imaginary constant 𝑖 s.t. 𝑖2 = −1

– Complex numbers: ℂ = 𝑎 + 𝑖 ⋅ 𝑏 | 𝑎, 𝑏 ∈ ℝ

• 𝑌 = −1,+1,−𝑖, +𝑖 ⟹ 𝑌2 = −1,+1

• ∀𝑥 ∈ ℂ ∖ 0 , there are 2 numbers 𝑦, 𝑧 ∈ ℂ s.t. 𝑦2 = 𝑧2 = 𝑥
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Choice of 𝑋

• Select points 𝑥0, 𝑥1, … , 𝑥𝑁−1 to evaluate 𝑝 and 𝑞 in a clever way

Consider the 𝑵 complex roots of unity:

𝝎𝟖
𝟏

𝝎𝟖
𝟐

𝝎𝟖
𝟑

𝝎𝟖
𝟒

𝝎𝟖
𝟓

𝝎𝟖
𝟔

𝝎𝟖
𝟕

𝝎𝟖
𝟎 = 𝟏

Principle root of unity: 𝝎𝑵 = 𝒆 ൗ𝟐𝝅𝒊
𝑵

𝑖 = −1, 𝑒2𝜋𝑖 = 1

Powers of 𝝎𝑵 (roots of unity):

1 = 𝜔𝑁
0 , 𝜔𝑁

1 , … ,𝜔𝑁
𝑁−1

Note: 𝜔𝑁
𝑘 = 𝑒 ൗ2𝜋𝑖𝑘

𝑁 = cos
2𝜋𝑘

𝑁
+ 𝑖 ⋅ sin

2𝜋𝑘

𝑁



Algorithm Theory Fabian Kuhn 13

Properties of the Roots of Unity

Cancellation Lemma:

• For all integers 𝑛 > 0, 𝑘 ≥ 0, and 𝑑 > 0, we have:

𝝎𝒅𝒏
𝒅𝒌 = 𝝎𝒏

𝒌 , 𝝎𝒏
𝒌+𝒏 = 𝝎𝒏

𝒌

Proof: Recall that 𝜔𝑛 = 𝑒 Τ2𝜋𝑖
𝑛,  𝑒2𝜋𝑖 = 1

𝜔𝑑𝑛
𝑑𝑘 = 𝑒

2𝜋𝑖
𝑑𝑛

𝑑𝑘

= 𝑒
2𝜋𝑖
𝑑𝑛 ⋅𝑑𝑘 = 𝑒

2𝜋𝑖
𝑛 ⋅𝑘 = 𝜔𝑛

𝑘

𝜔𝑛
𝑘+𝑛 = 𝑒

2𝜋𝑖
𝑛

𝑘+𝑛

= 𝑒
2𝜋𝑖
𝒅𝑛

⋅ 𝑘+𝑛 = 𝑒
2𝜋𝑖
𝑛 ⋅𝑘 ⋅ 𝑒2𝜋𝑖 = 𝜔𝑛

𝑘
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Properties of the Roots of Unity

Claim: If 𝑋 = 𝜔2𝑘
𝑗
∶ 𝑗 ∈ 0,… , 2𝑘 − 1 , we have

𝑿𝟐 = 𝝎𝒌
𝒋
∶ 𝒋 ∈ 𝟎,… , 𝒌 − 𝟏 , 𝑿𝟐 =

𝑿

𝟐

Proof:

• We just showed: 𝜔𝑑𝑛
𝑑𝑘 = 𝜔𝑛

𝑘 , 𝜔𝑛
𝑘+𝑛 = 𝜔𝑛

𝑘

• Consider some 𝑥 = 𝜔2𝑘
𝑗
∈ 𝑋:

𝑥2 = 𝜔2𝑘
𝑗

2
= 𝜔2𝑘

2𝑗
= 𝜔𝑘

𝑗

If 𝑗 ≥ 𝑘 ∶ 𝜔𝑘
𝑗
= 𝜔𝑘

𝑗−𝑘

• Clearly, 𝑋2 = 𝑋 /2 ( 𝑋 = 2𝑘, 𝑋2 = 𝑘).
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Analysis

New recurrence formula:

𝑇 𝑁, 𝑋 ≤ 2 ⋅ 𝑇 ൗ𝑁 2 ,
ൗ𝑋
2 + 𝑂(𝑁 + 𝑋 )

• W.l.o.g., assume that 𝑁 is a power of 2
– We can just add additional coefficients that are equal to 0.

• To compute 𝑝 𝑥 for the 𝑁 different points in 𝑋, we need to 

recursively compute 𝑝0 𝑥2 and 𝑝1 𝑥2 for all 𝑥2 ∈ 𝑋2

– 𝑝 has degree 𝑁 − 1, 𝑝0 and 𝑝1 have degree Τ𝑁 2− 1, 𝑋2 = ൗ|𝑋|
2

– Combine step: compute 𝑝 𝑥 = 𝑝0 𝑥2 + 𝑥 ⋅ 𝑝1 𝑥2 for all 𝑥 ∈ 𝑋

• 𝑋 = 𝑁 ⟹ 𝑇 𝑁 ≤ 2 ⋅ 𝑇 Τ𝑁 2 + 𝑂(𝑁)

𝑻 𝑵 = 𝑶 𝑵 ⋅ 𝐥𝐨𝐠𝑵
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Faster Polynomial Multiplication?

Idea to compute 𝑝 𝑥 ⋅ 𝑞(𝑥) (for polynomials of degree < 𝑛):

𝑝, 𝑞 of degree 𝑛 − 1, 𝑛 coefficients

2 × 2𝑛 point-value pairs 𝜔2𝑛
𝑘 , 𝑝 𝜔2𝑛

𝑘 and 𝜔2𝑛
𝑘 , 𝑞 𝜔2𝑛

𝑘

2𝑛 point-value pairs 𝜔2𝑛
𝑘 , 𝑝 𝜔2𝑛

𝑘 𝑞 𝜔2𝑛
𝑘

𝑝 𝑥 𝑞(𝑥) of degree 2𝑛 − 2, 2𝑛 − 1 coefficients

Evaluation at points 𝜔2𝑛
0 , 𝜔2𝑛

1 , … , 𝜔2𝑛
2𝑛−1

Point-wise multiplication

Interpolation

Time: 𝑂(𝑛 log 𝑛)

Time: 𝑂(𝑛)

???
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Discrete Fourier Transform

• The values 𝑝 𝜔𝑁
𝑗

for 𝑗 = 0,… ,𝑁 − 1 uniquely define a 

polynomial 𝑝 of degree < 𝑁.

Discrete Fourier Transform (DFT):

• Assume 𝑎 = 𝑎0, … , 𝑎𝑁−1 is the coefficient vector of poly. 𝑝

𝑝 𝑥 = 𝑎𝑁−1𝑥
𝑁−1 +⋯+ 𝑎1𝑥 + 𝑎0

𝐃𝐅𝐓𝑵 𝒂 ≔ 𝒑 𝝎𝑵
𝟎 , 𝒑 𝝎𝑵

𝟏 , … , 𝒑 𝝎𝑵
𝑵−𝟏
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Example

• Consider polynomial 𝑝 𝑥 = 3𝑥3 − 15𝑥2 + 18𝑥

• Choose 𝑁 = 4

• Roots of unity:

𝝎𝟒
𝟎 = 𝟏

𝝎𝟒
𝟏 = 𝒊

𝝎𝟒
𝟐 = −𝟏

𝝎𝟒
𝟑 = −𝒊
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Example

• Consider polynomial 𝑝 𝑥 = 3𝑥3 − 15𝑥2 + 18𝑥

• 𝑁 = 4, roots of unity: 𝜔4
0 = 1,𝜔4

1 = 𝑖, 𝜔4
2 = −1, 𝜔4

3 = −𝑖

• Evaluate 𝑝(𝑥) at 𝜔4
𝑘:

𝜔4
0, 𝑝 𝜔4

0 = 1, 𝑝 1 = 1,6

𝜔4
1, 𝑝 𝜔4

1 = 𝑖, 𝑝 𝑖 = 𝑖, 15 + 15𝑖

𝜔4
2, 𝑝 𝜔4

2 = −1, 𝑝 −1 = −1,−36

𝜔4
3, 𝑝 𝜔4

3 = −𝑖, 𝑝 −𝑖 = −𝑖, 15 − 15𝑖

• For 𝑎 = 0,18,−15,3 :

𝐃𝐅𝐓𝟒 𝒂 = (𝟔, 𝟏𝟓 + 𝟏𝟓𝒊,−𝟑𝟔, 𝟏𝟓 − 𝟏𝟓𝒊)
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DFT: Recursive Structure

Evaluation for 𝑘 = 0,… ,𝑁 − 1:

𝑝 𝜔𝑁
𝑘 = 𝑝0 (𝜔𝑁

𝑘 )2 +𝜔𝑁
𝑘 ⋅ 𝑝1 (𝜔𝑁

𝑘 )2

= ቐ
𝑝0 𝜔 Τ𝑁 2

𝑘 +𝜔𝑁
𝑘 ⋅ 𝑝1 𝜔 Τ𝑁 2

𝑘 if 𝑘 < ൗ𝑁 2

𝑝0 𝜔 Τ𝑁 2
𝑘− Τ𝑁 2 +𝜔𝑁

𝑘 ⋅ 𝑝1 𝜔 Τ𝑁 2
𝑘− Τ𝑁 2 if 𝑘 ≥ ൗ𝑁 2

For the coefficient vector 𝑎 of 𝑝 𝑥 :

DFT𝑁 𝑎 = 𝑝0 𝜔 Τ𝑁 2
0 , … , 𝑝0 𝜔 Τ𝑁 2

Τ𝑁 2−1
, 𝑝0 𝜔 Τ𝑁 2

0 , … , 𝑝0 𝜔 Τ𝑁 2
Τ𝑁 2−1

+ 𝜔𝑁
0 𝑝1 𝜔 Τ𝑁 2

0 , … , 𝜔𝑁
Τ𝑁 2−1𝑝1 𝜔 Τ𝑁 2

Τ𝑁 2−1 , 𝜔𝑁
Τ𝑁 2𝑝1 𝜔 Τ𝑁 2

0 , … , 𝜔𝑁
𝑁−1𝑝1 𝜔 Τ𝑁 2

Τ𝑁 2−1
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Example

For the coefficient vector 𝑎 of 𝑝 𝑥 :

DFT𝑁 𝑎 = 𝑝0 𝜔 Τ𝑁 2
0 , … , 𝑝0 𝜔 Τ𝑁 2

Τ𝑁 2−1 , 𝑝0 𝜔 Τ𝑁 2
0 , … , 𝑝0 𝜔 Τ𝑁 2

Τ𝑁 2−1

+ 𝜔𝑁
0 𝑝1 𝜔 Τ𝑁 2

0 , … , 𝜔𝑁
Τ𝑁 2−1

𝑝1 𝜔 Τ𝑁 2
Τ𝑁 2−1

, 𝜔𝑁
Τ𝑁 2
𝑝1 𝜔 Τ𝑁 2

0 , … , 𝜔𝑁
𝑁−1𝑝1 𝜔 Τ𝑁 2

Τ𝑁 2−1

𝑁 = 4:

𝑝 𝜔4
0 = 𝑝0 𝜔2

0 +𝜔4
0𝑝1 𝜔2

0

𝑝 𝜔4
1 = 𝑝0 𝜔2

1 + 𝜔4
1𝑝1 𝜔2

1

𝑝 𝜔4
2 = 𝑝0 𝜔2

0 +𝜔4
2𝑝1 𝜔2

0

𝑝 𝜔4
3 = 𝑝0 𝜔2

1 +𝜔4
3𝑝1 𝜔2

1

Need: 𝑝0 𝜔2
0 , 𝑝0 𝜔2

1 and 𝑝1 𝜔2
0 , 𝑝1 𝜔2

1

(DFTs of coefficient vectors of 𝑝0 and 𝑝1)
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Summary: Computation of DFT𝑁

• Divide-and-conquer algorithm for DFT𝑁(𝑝):

1. Divide

𝑁 ≤ 1: DFT1 𝑝 = 𝑎0

𝑁 > 1: Divide 𝑝 into 𝑝0 (even coeff.) and 𝑝1 (odd coeff).

2. Conquer

Solve DFT Τ𝑁 2(𝑝0) and DFT Τ𝑁 2(𝑝1) recursively

3. Combine

Compute DFT𝑁(𝑝) based on DFT Τ𝑁 2(𝑝0) and DFT Τ𝑁 2 𝑝1
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Small Constant Improvement

Polynomial 𝑝 of degree 𝑁 − 1:

𝑝 𝜔𝑁
𝑘 = ቐ

𝑝0 𝜔 Τ𝑁 2
𝑘 + 𝜔𝑁

𝑘 ⋅ 𝑝1 𝜔 Τ𝑁 2
𝑘 if 𝑘 < ൗ𝑁 2

𝑝0 𝜔 Τ𝑁 2
𝑘− Τ𝑁 2 + 𝜔𝑁

𝑘 ⋅ 𝑝1 𝜔 Τ𝑁 2
𝑘− Τ𝑁 2 if 𝑘 ≥ ൗ𝑁 2

= ቐ
𝑝0 𝜔 Τ𝑁 2

𝑘 + 𝜔𝑁
𝑘 ⋅ 𝑝1 𝜔 Τ𝑁 2

𝑘 if 𝑘 < ൗ𝑁 2

𝑝0 𝜔 Τ𝑁 2
𝑘− Τ𝑁 2 − 𝜔𝑁

𝑘− Τ𝑁 2 ⋅ 𝑝1 𝜔 Τ𝑁 2
𝑘− Τ𝑁 2 if 𝑘 ≥ ൗ𝑁 2

• 𝜔𝑁
𝑘− Τ𝑁 2 = 𝑒

2𝜋𝑖

𝑁
⋅ 𝑘− Τ𝑁 2 = 𝑒

2𝜋𝑖

𝑁
⋅𝑘 ⋅ 𝑒−

2𝜋𝑖

𝑁
⋅
𝑁

2 = 𝜔𝑁
𝑘 ⋅ 𝑒−𝜋𝑖 = −𝜔𝑁

𝑘

Need to compute 𝑝0 𝜔 Τ𝑁 2
𝑘 and 𝜔𝑁

𝑘 ⋅ 𝑝1 𝜔 Τ𝑁 2
𝑘 for 0 ≤ 𝑘 < Τ𝑁 2.
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Example 𝑁 = 8

𝑝 𝜔8
0 = 𝑝0 𝜔4

0 +𝜔8
0 ⋅ 𝑝1 𝜔4

0

𝑝 𝜔8
1 = 𝑝0 𝜔4

1 +𝜔8
1 ⋅ 𝑝1(𝜔4

1)

𝑝 𝜔8
2 = 𝑝0 𝜔4

2 + 𝜔8
2 ⋅ 𝑝1(𝜔4

2)

𝑝 𝜔8
3 = 𝑝0 𝜔4

3 + 𝜔8
3 ⋅ 𝑝1(𝜔4

3)

𝑝 𝜔8
4 = 𝑝0 𝜔4

0 − 𝜔8
0 ⋅ 𝑝1(𝜔4

0)

𝑝 𝜔8
5 = 𝑝0 𝜔4

1 − 𝜔8
1 ⋅ 𝑝1(𝜔4

1)

𝑝 𝜔8
6 = 𝑝0 𝜔4

2 − 𝜔8
2 ⋅ 𝑝1(𝜔4

2)

𝑝 𝜔8
7 = 𝑝0 𝜔4

3 − 𝜔8
3 ⋅ 𝑝1(𝜔4

3)
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Fast Fourier Transform (FFT) Algorithm

Algorithm FFT(a)

• Input: Array 𝑎 of length 𝑁, where 𝑁 is a power of 2

• Output: DFT𝑁 𝑎

if 𝑛 = 1 then return 𝑎0;                      // 𝑎 = 𝑎0
𝑑 0 ≔ FFT 𝑎0, 𝑎2, … , 𝑎𝑁−2 ;

𝑑 1 ≔ FFT 𝑎1, 𝑎3, … , 𝑎𝑁−1 ;

𝜔𝑁 ≔ 𝑒 ൗ2𝜋𝑖
𝑁; 𝜔 ≔ 1;

for 𝑘 = 0 to Τ𝑁 2− 1 do // 𝜔 = 𝜔𝑁
𝑘

𝑥 ≔ 𝜔 ⋅ 𝑑𝑘
1

;

𝑑𝑘 ≔ 𝑑𝑘
0
+ 𝑥; 𝑑𝑘+ Τ𝑁 2 ≔ 𝑑𝑘

0
− 𝑥;

𝜔 ≔ 𝜔 ⋅ 𝜔𝑁

end;

return 𝑑 = [𝑑0, 𝑑1, … , 𝑑𝑁−1];


