"nr Algorithm Theory

Chapter 1
Divide and Conquer

Part IV:
Fast Polynomial Multiplication 1

Fabian Kuhn

UNI

FREIBURG

UNI

Representation of Polynomials

FREIBURG

Coefficient Representation:

* Polynomial of degree n — 1 defined by coefficients a, ..., a,;_1:

p(x) =ag+a,x + azxz 4+ ..o 4 an—1xn_1

Point-value Representation:
* Polynomial p(x) of degree n — 1 is given by n point-value pairs:

P = {(xO' p(xO))l (xl; p(xl)); ety (xn—1; p(x‘n—l))}

where x; # x; for i # j.

 Example: The polynomial
p(x) = 3x3 — 15x% + 18x = 3x(x — 2)(x — 3)

is uniquely defined by the four point-value pairs
(0,0), (1,6),(2,0), (3,0).

Algorithm Theory Fabian Kuhn 2

Operations: Coefficient Representation ;

UNI
FREIBURG

p(x) = ap_1x" '+ +ag, qx) =by_1x" " + -+ by
Evaluation: Horner’s method: Time O(n)

Addition:
p(x) +q(x) = (ap_1 + by_)x™ 1 4+ -+ (ag + by)

* Time: O(n)
Multiplication:
i
p(x) - q(x) = cpppx?™ "% + -+ + ¢, where ¢; = z ajb;_;
j=0
* Naive solution: Need to compute product a;b; forall0 < i,j <n

» Time: Naive alg. 0(n?) Karatsuba Alg. O (n1-5849--)

Algorithm Theory Fabian Kuhn 3

Operations: Point-Value Representation .

UNI
FREIBURG

P = {(XO, p(xO)): ey (xn—lJ p(xn—l))}
q = {(x()' q(x())), Ly (xn—l; q(xn—l))}

* Note: We use the same points xy, ..., X,,_1 for both polynomials.
Addition:

p+q= {(XO»P(XO) + Cl(xo))» ey (xn—1»P(Xn—1) + Q(Xn—1))}
* Time: O(n)
Multiplication:

p-q= {(xo»P(xo) ' Cl(xo)); "y (xZn—z»P(xzn—z) ’ Q(xzn—z))}
* Time: 0(n)

 Remark: Need both polynomials at (the same) 2n — 1 points.

Evaluation: Polynomial interpolation can be done in O(nz)
Algorithm Theory Fabian Kuhn 4

UNI

Operations on Polynomials

FREIBURG

Cost depending on representation:

Coefficient Point-Value
Evaluation 0(n) 0(n?)
Addition Oo(n) o(n)

Multiplication o(n)

i}

default Can we
representation improve this?

Algorithm Theory Fabian Kuhn 5

UNI

Faster Polynomial Multiplication?

FREIBURG

Multiplication is fast when using the point-value representation

Idea to compute p(x) - g(x) (for polynomials of degree < n):

p, q of degree n — 1, n coefficients | We will consider
this first.
l Evaluation at points xg, X1, ..., X25—» Remark: We can

freely choose
2 X 2n point-value pairs (xl-,p(xl-)) and (xl-, q(xi)) the points.

l Point-wise multiplication Time: O(n)

2n point-value pairs (x;, p(x;)q(x;))
l Interpolation

p(x)q(x) of degree 2n — 2, 2n — 1 coefficients

Algorithm Theory Fabian Kuhn 6

Coefficients to Point-Value Representation _

UNI
FREIBURG

Given: Polynomial p(x) by the coefficient vector (ay, a4, ..., ay—1)

Goal: Compute p(x) for all x in a given set' X
— Where X isof size |[X| =N [NZZn—l
— Assume that N is a power of 2

We will fix X later.

Divide and Conquer Approach

* Divide p(x) of degree N — 1 (N is even) into 2 polynomials of
degree V/, — 1 differently than in Karatsuba’s algorithm

c po(¥) =ag+ a,y+ a,y®+ -+ aN_ZyN/Z‘1 (even coeff.)
p(Y) =a; +azy + azsy? + - +ay_1y 7271 (odd coeff)

We call the variable y because we will
not plug in x into py and p;

Algorithm Theory Fabian Kuhn 7

Coefficients to Point-Value Representation _

UNI
FREIBURG

Goal: Compute p(x) for all x in a given set X of size |[X| = N

 Divide p(x) of degr. N — 1 into 2 polynomials of degr. v/, — 1
po(Y) = ag + a,y + a,y* + - + 01,\,_2311\’/2‘1 (even coeff.)
p:(y) =a; +azy +asy? + -+ aN_lyN/Z_1 (odd coeff.)

Let’s first look at the “combine” step:

* We need to compute p(x) for all x € X after recursive calls for
polynomials py and py:

* Plugy = x* into po(y) and p; (¥):
po(x2) = ag + azx? + azx* + -+ ay_,xN"
p1(x?) = ay + azx? + agx* + -+ ay_1xN"

p(x) = po(x?) + x - p1(x?)

Algorithm Theory Fabian Kuhn 8

2
2

Coefficients to Point-Value Representation _

UNI
FREIBURG

Goal: Compute p(x) for all x in a given set X of size |[X| = N
 Divide p(x) of degr. N — 1 into 2 polynomials of degr. v/, — 1

po(¥) = ag +a,y + a4y2 + -+ 01,\,_2311\’/2‘1 (even coeff.)
p(y) =a; +azy+ a5y2 + -+ a,\,_lyN/Z‘1 (odd coeff.)

Let’s first look at the “combine” step:
Vx € X: p(x) =po(x?) + x - py(x?)

* Goal: recursively compute py(y) and p,(y) forall y € X?
— Where X? := {x? : x € X}

» Generally, we have |[X?| = |X]

Algorithm Theory Fabian Kuhn 9

Analysis

UNI
FREIBURG

Let’s get a recurrence recurrence for the given algorithm:

Time for polynomial of degree N with set X: T(N, | X|)
TN, IXD) =2-T(N/y, |X2]) + 0V + 1X1)
Assume that |X?| = |X| = N:
T(N,N)=2-T (N/Z,N) +O0(N) = =N - (T(1,N) + O(\))
T(1,N) = O(N)

Therefore, we get T(N, |X]) = O(N?).
* We need |X2| < |X| to get a faster algorithm!

Algorithm Theory Fabian Kuhn 10

Faster Algorithm?

UNI

FREIBURG

In order to have a faster algorithm, we need |X2| < |X]:
» |X?2| < |X]if X contains values x, x" such that x? = x'?:

X={-1,+1} = X?={+1}

2
We also need ‘(XZ) ‘ = |x*| < |x?|:
— Can we get aset Y of size 4 such that Y? = {—1, +1}?

 Complex numbers C:

— Define imaginary constant i s.t. i* = —1
— Complex numbers:C={a+i-b | a,b € R}

Y ={-1,+1,—i,+i} = Y? ={-1,+1}
Vx € C\ {0}, there are 2 numbers y,z € Cs.t. y* = z? = x

Algorithm Theory Fabian Kuhn

11

Choice of X

UNI
f

FREIBURG

* Select points xg, X1, ..., Xy—1 to evaluate p and g in a clever way

Consider the N complex roots of unity:

Principle root of unity: wy = e/ 2

(i =+/—1, g2 =

Powers of wy (roots of unity):

0

_ 1 N-1
1 = wy, wy, ..., Wy

2mik 21k . . 2Tk
Note: w,’f, =e"™/n = COST-I- L-sIn—-

Algorithm Theory Fabian Kuhn 12

Properties of the Roots of Unity

UNI

FREIBURG

Cancellation Lemma:

 Forallintegersn >0,k = 0,and d > 0, we have:

dk _ _ 'k k+n _ _ k
WDan = Wy, Wp —~ = Wy

Proof: Recall that w,, = e”"/n, 2™ = 1

i (Zni) Zni-dk Zni_k ,
W4y, = \edn — edn —en = Wy
A k+n } ;
2TTL 27TT1 2711
e —-(k+n —-k]
w71§+n=(en) =edn()=en . @2Tl —

Algorithm Theory Fabian Kuhn

13

Properties of the Roots of Unity

|
FRE:BURG

UNI

Claim: If X = {wék :j €10, ..., 2k — 1}}, we have

. X
X2={w’k:]€{0,...,k—1}}, |X2‘=7

Proof:

* We just showed: w2 = wk, wkt™ = wk

e Consider some x = wék e X:

.\ 2 .
2 —(,,] — 2] —]
X —(wZR) = Wy = W

Ifj=k: o =w™

* Clearly, |[X?| = 1X|/2 (IX| = 2k, |X?| = k).

Algorithm Theory Fabian Kuhn 14

UNI

Analysis

FREIBURG

New recurrence formUIa:
T(N,|X|)<2-T (N/Z, |X|/2) +ON + X

* W.l.o.g., assume that N is a power of 2

— We can just add additional coefficients that are equal to O.

* To compute p(x) for the N different points in X, we need to
recursively compute po(x?2) and p;(x?) for all x% € X?

X2| — |X|/2

— Combine step: compute p(x) = po(x?) + x - py(x2) forall x € X

— p has degree N — 1, p, and p; have degree N/, — 1,

e | X|=N = T(N)<2-T("/,) + O(N)
T(N) =0O(N -logN)

Algorithm Theory Fabian Kuhn 15

Faster Polynomial Multiplication?

UNI
FREIBURG

Idea to compute p(x) - q(x) (for polynomials of degree < n):

p, q of degree n — 1, n coefficients

l Evaluation at points w5, w3, ..., w57~ Time: O(nlogn)

2 X 2n point-value pairs (w’z‘n,p(wlz‘n)) and (w’z‘n, q(w’fn))

l Point-wise multiplication Time: O(n)

2n point-value pairs (w’zcn,p(wlz‘n)q(wlz‘n))

1 Interpolation . ???

p(x)q(x) of degree 2n — 2, 2n — 1 coefficients

Algorithm Theory Fabian Kuhn 16

Discrete Fourier Transform

UNI

FREIBURG

* Thevaluesp (w,{,) forj =0,...,N — 1 uniquely define a
polynomial p of degree < N.

Discrete Fourier Transform (DFT):
* Assume a = (ay, ..., ay_1) is the coefficient vector of poly. p
(p(x) = ay_1xVN" 1+ + a;x + ag)

DFTy(a) = (p(w%),p(w}v); ---»P(w%_l))

Algorithm Theory Fabian Kuhn

17

Example

* Consider polynomial p(x) = 3x3 — 15x% + 18x
e Choose N =4

* Roots of unity:

w) =1

=1
1

w3
wj = IC
g

Algorithm Theory Fabian Kuhn

UNI
f

FREIBURG

Example

* Consider polynomial p(x) = 3x3 — 15x% + 18x
N =4, rootsofunity: wi = 1,w; =i, ws = —1, w; = —i

* Evaluate p(x) at wk:
(09,p(@9)) = (1,p(D) = (1,6)
(wi,p(wi)) = (i,p(Q)) = (i, 15 + 15i)
(03,p(w3)) = (-1,p(-1) = (-1,-36)
(wi’,p(wfﬁ) = (=i, p(-=1)) = (=i, 15 — 15i)

* Fora =(0,18,—15,3):
DFT,(a) = (6,15 + 15i,—36,15 — 15i)

Algorithm Theory Fabian Kuhn

|
FRE:BURG

UNI

DFT: Recursive Structure

|
FRE:BURG

UNI

Evaluationfork =0, ..., N — 1:

p(wf) = po((w§)?) + wf - p1((w§)?)

Po(wzlf//z) + wy - Pl(wzl\c//z) if ke < N/Z
po (0 n?) + 0l -y (0 n?) ifk =N/,

For the coefficient vector a of p(x):

DFTy(@) = (o 2)r 0 (372 7) 82D, 0 (/3 7)

(o802 o () a0y (057)

Algorithm Theory Fabian Kuhn 20

Example

UNI
FREIBURG

For the coefficient vector a of p(x):

DFTy(a) = (Po(wg//z)' ., Do (wxg‘l) ’po(wg,/z), .ty Po (wxgﬂ))

+ (wf\’,pl(wf\’,/z),) (a)xﬁ_l) , wx/zpl(a)g,/z), ey ON D1 (wxﬁ_l))

N = 4.
p(wg) = po(w?) + wip:(w?)
p(wz) = po(wz) + wips (w3)
p(wf) = po(w3) + wipi(w3)
p(w3i) = po(w3) + wip:(w3)

Need: (po(a)g),po(w%)) and (pl(wg),pl(w%))
(DFTs of coefficient vectors of p, and p;)

Algorithm Theory Fabian Kuhn 21

Summary: Computation of DFTy

UNI
i

FREIBURG

* Divide-and-conquer algorithm for DFTy (p):

N < 1: DFT]_(p) = ao

N > 1: Divide p into p, (even coeff.) and p; (odd coeff).

Solve DFTy /,(po) and DFTy /,(p,) recursively

Compute DFTy (p) based on DFTy /,(po) and DFTy /,(p1)

Algorithm Theory Fabian Kuhn 22

UNI

Small Constant Improvement

Polynomial p of degree N — 1:

o) | PR Rk mak) i<
Po(wna”) + o -p(en2”) itz N/
[molak)roh mlh) k<M
po(0nys) —on % pi (wnys”?) itk =N/,

v kN2 = g k) R T = ke = gk

Need to compute po(w,’\‘,/z) and wg - pl(w,’f,/z) for0 < k <V/,.

Algorithm Theory Fabian Kuhn 23

FREIBURG

Example N = 8

UNI

FREIBURG

Algorithm Theory

p(wg) = po(wl) + wg
p(wg) = po(wi) + wg
p(w§) = po(wf) + w§
p(wg) = po(@3) + wg
p(wg) = po(wl) — wg
p(ws) = po(wi) — wg
p(wg) = po(wz) — w3
p(wg) = po(w3) — w3

Fabian Kuhn

"P1 (wff)
- pr(wg)
- p1(@3)
- p1(w3)
- p1(@3)
- p1(w3)
- p1(w3)
- p1(w3)

24

Fast Fourier Transform (FFT) Algorithm

UNI

FREIBURG

Algorithm FFT(a)
* Input: Array a of length N, where N is a power of 2
e OQOutput: DFTy(a)

if n = 1 then return a; [/ a=lag]
d'% == FFT([a, az, ..., ay—2]);
dltl == FFT(la,, as, ..., an—1]);
_mif
wy=e 'N;w:=1;
fork=0toN/, —1do /] w = wf

X = - dl[cl];

dy == d}(o] + X dpinyz = dl[cO] -
W= "Wy

end;

returnd = [d(); d1; ey dN—l];

Algorithm Theory Fabian Kuhn

25

