
Algorithm Theory

Chapter 2

Greedy Algorithms

Part III:
Exchange Arguments

Fabian Kuhn



Algorithm Theory Fabian Kuhn 2

Back to Scheduling

• Given: 𝑛 requests / jobs with deadlines:

• Goal: schedule all jobs with minimum lateness 𝐿
– Schedule: 𝑠(𝑖), 𝑓(𝑖): start and finishing times of request 𝑖

Note: 𝑓 𝑖 = 𝑠 𝑖 + 𝑡𝑖
– Lateness 𝐿𝑖 of request 𝑖 : 𝐿𝑖 ≔ max 0, 𝑓 𝑖 − 𝑑𝑖

• Lateness 𝐿 ≔ max 0, max
𝑖

𝑓 𝑖 − 𝑑𝑖 = max
𝑖

𝐿𝑖

– largest amount of time by which some job finishes late

• Many other natural objective functions possible…

0 1 2 3 4 5 76 8 9 10 11 12 13 14

length 𝑡1 = 10length 𝑡1 = 10

𝑡3 = 3𝑡3 = 3

𝑡4 = 5𝑡4 = 5

𝑡2 = 7𝑡2 = 7

deadline 𝑑1 = 11

𝑑2 = 10

𝑑3 = 13

𝑑4 = 7



Algorithm Theory Fabian Kuhn 3

Greedy Algorithm?

Schedule jobs in order of increasing length?

• Ignores deadlines: seems too simplistic…

• E.g.:

Schedule by increasing slack time?

• Should be concerned about slack time: 𝑑𝑖 − 𝑡𝑖

𝑡1 = 10𝑡1 = 10 deadline 𝑑1 = 10

⋯ 𝑑2 = 100𝑡2 = 2𝑡2 = 2

𝑡2 = 2𝑡2 = 2 𝑡1 = 10𝑡1 = 10Schedule:

𝑡1 = 10𝑡1 = 10 deadline 𝑑1 = 10

𝑑2 = 3𝑡2 = 2𝑡2 = 2

𝑡2 = 2𝑡2 = 2𝑡1 = 10𝑡1 = 10Schedule:



Algorithm Theory Fabian Kuhn 4

Greedy Algorithm

Schedule by earliest deadline?

• Schedule in increasing order of 𝑑𝑖
• Ignores lengths of jobs: too simplistic?

• Earliest deadline is optimal!

Algorithm:

• Assume jobs are reordered such that 𝑑1 ≤ 𝑑2 ≤ ⋯ ≤ 𝑑𝑛
• Start/finishing times:

– First job starts at time 𝑠 1 = 0

– Duration of job 𝑖 is 𝑡𝑖: 𝑓 𝑖 = 𝑠 𝑖 + 𝑡𝑖
– No gaps between jobs: 𝑠 𝑖 + 1 = 𝑓 𝑖

(idle time: gaps in a schedule  alg. gives schedule with no idle time)



Algorithm Theory Fabian Kuhn 5

Example

Jobs ordered by deadline:

Schedule:

Lateness: job 1: 0, job 2: 0, job 3: 4, job 4: 5

0 1 2 3 4 5 76 8 9 10 11 12 13 14

𝑡3 = 7𝑡3 = 7

𝑡4 = 3𝑡4 = 3

𝑡1 = 5𝑡1 = 5

𝑡2 = 3𝑡2 = 3

𝑑3 = 11

𝑑2 = 10

𝑑4 = 13

𝑑1 = 7

0 1 2 3 4 5 76 8 9 10 11 12 13 14

𝑡1 = 5𝑡1 = 5 𝑡2 = 3𝑡2 = 3 𝑡3 = 7𝑡3 = 7 𝑡4 = 3𝑡4 = 3

15 16 1817



Algorithm Theory Fabian Kuhn 6

Basic Facts

1. There is an optimal schedule with no idle time
– Can just schedule jobs earlier…

2. Inversion: Job 𝑖 scheduled before job 𝑗 if 𝑑𝑖 > 𝑑𝑗
Schedules with no inversions have the same maximum lateness

deadline = 11 deadline = 13 deadline =20

maximum lateness of green jobs

𝟏𝟑



Algorithm Theory Fabian Kuhn 7

Earliest Deadline is Optimal

Theorem: 
There is an optimal schedule 𝒪 with no inversions and no idle time.

Proof:

• Consider some schedule 𝒪′ with no idle time

• If 𝒪′ has inversions, ∃ pair (𝑖, 𝑗), s.t. 𝑖 is scheduled immediately 
before 𝑗 and 𝑑𝑗 < 𝑑𝑖

• Claim: Swapping 𝑖 and 𝑗 gives a schedule with
1. Fewer inversions

2. Maximum lateness no larger than in 𝒪′

𝑖′𝑖′ 𝑗′𝑗′

𝑑𝑖′ > 𝑑𝑗′

𝑖𝑖 𝑗𝑗

𝑑𝑖 > 𝑑𝑗
increasing deadlines



Algorithm Theory Fabian Kuhn 8

Earliest Deadline is Optimal

Claim: Swapping 𝑖 and 𝑗: maximum lateness no larger than in 𝒪′

𝑖𝑖

𝑑𝑗 𝑑𝑖

𝑗𝑗

Lateness 𝐿𝑗 = max 0, 𝑡 − 𝑑𝑗

𝑡

Max. lateness after swap:

𝐿𝑖
′ = max 0, 𝑡 − 𝑑𝑖 ≤ 𝐿𝑗

𝐿𝑗
′ = max 0, 𝐿𝑗 − 𝑡𝑖 ≤ 𝐿𝑗

𝑗𝑗

𝑖𝑖



Algorithm Theory Fabian Kuhn 9

Exchange Argument

• General approach that often works to analyze greedy algorithms

• Start with any solution

• Define basic exchange step that allows to transform solution into 
a new solution that is not worse

• Show that exchange step move solution closer to the solution 
produced by the greedy algorithm

• Number of exchange steps to reach greedy solution should be 
finite…



Algorithm Theory Fabian Kuhn 10

Another Exchange Argument Example

• Minimum spanning tree (MST) problem
– Classic graph-theoretic optimization problem

• Given: weighted graph

• Goal: spanning tree with min. total weight

• Several greedy algorithms work

• Kruskal’s algorithm:
– Start with empty edge set

– As long as we do not have a spanning tree:
add minimum weight edge that doesn’t close a cycle



Algorithm Theory Fabian Kuhn 11

Kruskal Algorithm: Example

3

14
4

6

1

10

13

23

21

31

8
25

20

1118

17

16

199

12

7 2
28



Algorithm Theory Fabian Kuhn 12

Kruskal is Optimal

• Basic exchange step: swap to edges to get from tree 𝑇 to tree 𝑇𝐾
– Swap out edge not in Kruskal tree 𝑇𝐾, swap in edge in Kruskal tree 𝑇𝐾
– Swapping does not increase total weight

• For simplicity, assume, weights are unique

𝑇 : any spanning tree
𝑇𝐾: Kruskal tree

Assume that 𝑇 ≠ 𝑇𝐾 ⟹ ∃𝑒 ∈ 𝑇 ∖ 𝑇𝐾

𝒆
𝑳 𝑹

𝑻
𝒇

𝑓 is the lightest edge
connecting 𝐿 and 𝑅

⟹ 𝑓 ∈ 𝑇𝐾 ∖ 𝑇
⟹𝑤 𝑓 < 𝑤(𝑒)

𝑇′ ≔ 𝑇 ∖ 𝑒 ∪ 𝑓 is a
spanning tree of smaller 
total weight than 𝑇.

𝑓 is the lightest edge
connecting 𝐿 and 𝑅

⟹ 𝑓 ∈ 𝑇𝐾 ∖ 𝑇
⟹𝑤 𝑓 < 𝑤(𝑒)

𝑇′ ≔ 𝑇 ∖ 𝑒 ∪ 𝑓 is a
spanning tree of smaller 
total weight than 𝑇.


