Algorithm Theory

Chapter 2
Greedy Algorithms

Part lll:
Exchange Arguments
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Back to Scheduling

UNI
FREIBURG

* Given: n requests / jobs with deadlines:

length t; = 10

|deadline d; =11

t2=7 Id2=10
t; =3 |d; =13
t4,=5 Id4=7
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14

e Goal: schedule all jobs with minimum lateness L

— Schedule: s(i), f (i): start and finishing times of request i
Note: f(i) = s(i) + ¢;
— Lateness L; of request i : L; := max{0, f(i) — d;}

e Lateness L := max {0, max{f (i) — di}} = max L;
l l

— largest amount of time by which some job finishes late

 Many other natural objective functions possible...
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Greedy Algorithm?
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Schedule jobs in order of increasing length?
* Ignores deadlines: seems too simplistic...

* E.g.:

Schedule:

Schedule by increasing slack time?

* Should be concerned about slack time: d; — t;

Schedule:

t1=10
t2=2 Id2=3
t1=10 tz
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|deadline d; =10

|d, = 100

|deadline d; =10



Greedy Algorithm
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Schedule by earliest deadline?
* Schedule in increasing order of d;
* lIgnores lengths of jobs: too simplistic?

* Earliest deadline is optimal!

Algorithm:
* Assume jobs are reordered suchthatd; < d, < --- <d,
 Start/finishing times:

— First job starts at time s(1) =0

— Duration of job iist;: f(i) = s(i) + t;

— No gaps between jobs: s(i + 1) = f(i)

(idle time: gaps in a schedule = alg. gives schedule with no idle time)
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Example
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Jobs ordered by deadline:

t; =5 |d, =7
t, =3 |d, =10
ty =7 ld; =11
t, =3 |d, =
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Schedule:

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Lateness: job 1: 0, job 2: 0, job 3: 4, job 4: 5
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Basic Facts
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1. There is an optimal schedule with no idle time
— Canjust schedule jobs earlier...

2. Inversion: Job i scheduled before job j if d; > d;
Schedules with no inversions have the same maximum lateness

maximum lateness of green jobs

L|
>

v T

deadline = 11 deadline]= 13 deadline =20
13
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Theorem:
There is an optimal schedule O with no inversions and no idle time.

Proof:
e Consider some schedule O’ with no idle time

* If O’ has inversions, 3 pair (i, j), s.t. i is scheduled immediately
before j and d; < d;

d; > d,

- increasing deadlines - - i
%‘lll-.> L I ]
di, > d]’

* Claim: Swapping i and j gives a schedule with
1. Fewerinversions

2.  Maximum lateness no larger than in O’

Algorithm Theory Fabian Kuhn 7



Earliest Deadline is Optimal
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Claim: Swapping i and j: maximum lateness no larger than in O’

d; d

t
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Lateness L; = maX{O, t — dj}

Max. lateness after swap:
L; = max{0,t — d;} < L;
L = max{0,L; — t;} < L;



Exchange Argument

UNI
FREIBURG

General approach that often works to analyze greedy algorithms

Start with any solution

Define basic exchange step that allows to transform solution into
a new solution that is not worse

Show that exchange step move solution closer to the solution
produced by the greedy algorithm

Number of exchange steps to reach greedy solution should be
finite...
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Another Exchange Argument Example
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Minimum spanning tree (MST) problem
— Classic graph-theoretic optimization problem

Given: weighted graph
Goal: spanning tree with min. total weight

Several greedy algorithms work

Kruskal’s algorithm:
— Start with empty edge set

— As long as we do not have a spanning tree:
add minimum weight edge that doesn’t close a cycle
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Kruskal Algorithm: Example
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Kruskal is Optimal
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* Basic exchange step: swap to edges to get from tree T to tree Tg
— Swap out edge not in Kruskal tree Tk, swap in edge in Kruskal tree Ty

— Swapping does not increase total weight

* For simplicity, assume, weights are unique

T :any spanning tree
Tk : Kruskal tree

f is the lightest edge

AssumethatT # Ty = e €T \ Ty connecting L and R
= w(f) <w(e)
L e R T':==T\{e}U{f}isa

spanning tree of smaller
total weight than T.
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