Algorithm Theory

Chapter 2
Greedy Algorithms

Part lll:
Exchange Arguments

Fabian Kuhn

UNI

FREIBURG

Back to Scheduling

UNI
FREIBURG

* Given: n requests / jobs with deadlines:

length t; = 10

|deadline d; =11

t2=7 Id2=10
t; =3 |d; =13
t4,=5 Id4=7
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14

e Goal: schedule all jobs with minimum lateness L

— Schedule: s(i), f (i): start and finishing times of request i
Note: f(i) = s(i) + ¢;
— Lateness L; of request i : L; := max{0, f(i) — d;}

e Lateness L := max {0, max{f (i) — di}} = max L;
l l

— largest amount of time by which some job finishes late

 Many other natural objective functions possible...
Fabian Kuhn 2

Algorithm Theory

Greedy Algorithm?

UNI
|

FREIBURG

Schedule jobs in order of increasing length?
* Ignores deadlines: seems too simplistic...

* E.g.:

Schedule:

Schedule by increasing slack time?

* Should be concerned about slack time: d; — t;

Schedule:

t1=10
t2=2 Id2=3
t1=10 tz

Algorithm Theory

Fabian Kuhn

|deadline d; =10

|d, = 100

|deadline d; =10

Greedy Algorithm

UNI
FREIBURG

Schedule by earliest deadline?
* Schedule in increasing order of d;
* lIgnores lengths of jobs: too simplistic?

* Earliest deadline is optimal!

Algorithm:
* Assume jobs are reordered suchthatd; < d, < --- <d,
 Start/finishing times:

— First job starts at time s(1) =0

— Duration of job iist;: f(i) = s(i) + t;

— No gaps between jobs: s(i + 1) = f(i)

(idle time: gaps in a schedule = alg. gives schedule with no idle time)

Algorithm Theory Fabian Kuhn 4

Example

UNI
FREIBURG

Jobs ordered by deadline:

t; =5 |d, =7
t, =3 |d, =10
ty =7 ld; =11
t, =3 |d, =
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Schedule:

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Lateness: job 1: 0, job 2: 0, job 3: 4, job 4: 5

Algorithm Theory Fabian Kuhn 5

Basic Facts

UNI
|

FREIBURG

1. There is an optimal schedule with no idle time
— Canjust schedule jobs earlier...

2. Inversion: Job i scheduled before job j if d; > d;
Schedules with no inversions have the same maximum lateness

maximum lateness of green jobs

L|
>

v T

deadline = 11 deadline]= 13 deadline =20
13

Algorithm Theory Fabian Kuhn 6

UNI

Earliest Deadline is Optimal

FREIBURG

Theorem:
There is an optimal schedule O with no inversions and no idle time.

Proof:
e Consider some schedule O’ with no idle time

* If O’ has inversions, 3 pair (i, j), s.t. i is scheduled immediately
before j and d; < d;

d; > d,

- increasing deadlines - - i
%‘lll-.> L I]
di, > d]’

* Claim: Swapping i and j gives a schedule with
1. Fewerinversions

2. Maximum lateness no larger than in O’

Algorithm Theory Fabian Kuhn 7

Earliest Deadline is Optimal

UNI
FREIBURG

Claim: Swapping i and j: maximum lateness no larger than in O’

d; d

t

Algorithm Theory

Fabian Kuhn

Lateness L; = maX{O, t — dj}

Max. lateness after swap:
L; = max{0,t — d;} < L;
L = max{0,L; — t;} < L;

Exchange Argument

UNI
FREIBURG

General approach that often works to analyze greedy algorithms

Start with any solution

Define basic exchange step that allows to transform solution into
a new solution that is not worse

Show that exchange step move solution closer to the solution
produced by the greedy algorithm

Number of exchange steps to reach greedy solution should be
finite...

Algorithm Theory Fabian Kuhn 9

Another Exchange Argument Example

UNI

FREIBURG

Minimum spanning tree (MST) problem
— Classic graph-theoretic optimization problem

Given: weighted graph
Goal: spanning tree with min. total weight

Several greedy algorithms work

Kruskal’s algorithm:
— Start with empty edge set

— As long as we do not have a spanning tree:
add minimum weight edge that doesn’t close a cycle

Algorithm Theory Fabian Kuhn

10

Kruskal Algorithm: Example

UNI
|

FREIBURG

23

13
3
14 4
7 2
28
16 31
12
20

Algorithm Theory Fabian Kuhn

Kruskal is Optimal

UNI
|

FREIBURG

* Basic exchange step: swap to edges to get from tree T to tree Tg
— Swap out edge not in Kruskal tree Tk, swap in edge in Kruskal tree Ty

— Swapping does not increase total weight

* For simplicity, assume, weights are unique

T :any spanning tree
Tk : Kruskal tree

f is the lightest edge

AssumethatT # Ty = e €T \ Ty connecting L and R
= w(f) <w(e)
L e R T':==T\{e}U{f}isa

spanning tree of smaller
total weight than T.

Algorithm Theory Fabian Kuhn 12

