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Chapter 2
Greedy Algorithms

Part IV:
The Greedy Algorithm for Matroids
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Matroids
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* Same as MST, but more abstract... | Simple example:

. . 2 set system Ei={12,3,4}
Matroid: pair (E, I) [ {Q):{l}: {2},13}, {4},{1,2},{1,3},}
{1,4},{2,3},{2,4}, {3,4}

 E: finite set, called the ground set

« [:finite family of finite subsets of E (i.e., I € 2F),
called independent sets

(E,I) needs to satisfy 3 properties:

1. Empty setis independent, i.e., @ € I (implies that I + @)
2. Hereditary property: Forall A € E and all A" € 4,
ifA €I, thenalsoA' €1
3. Augmentation / Independent set exchange property:
If A,B € I and |A| > |B|, there exists x € A \ B such that

B':=BU{x}€el

Algorithm Theory Fabian Kuhn 2



Example
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 Fano matroid:
— Smallest finite projective plane of order 2...
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Matroids and Greedy Algorithms
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Weighted matroid: each e € E has a weight w(e) > 0

* Recall that all independent sets in I consist of a finite set of
elements of E.

Goal: find maximum weight independent set
Greedy algorithm:
1. StartwithS =0

2. Add max. weight x € E'\ Sto SsuchthatS U {x} €I

Claim: greedy algorithm computes optimal solution
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. . Matroid (E, ), 2
Greedy IS Optlmal weights w(x) > 0 forallx € E -gé-
 S:greedy solution A: any other solution («d. set)
S=g, ST AcC, AeT
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Forests of a graph ¢ = (V,E):

e forest F: subgraph with no cycles (i.e., F € F)

« F:setofall forests 2 (E,F) is a matroid

* Greedy algorithm gives maximum weight forest

— equivalent to MST problem

Bicircular matroid of a graph ¢ = (V,E):
* B:setof edges such that every connected subset has < 1 cycle
* (E,B) is a matroid = greedy gives max. weight such subgraph

Linearly independent vectors:
* Vector space V, E: finite set of vectors, I: sets of lin. indep. vect.
* Fano matroid can be defined like that
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Forest Matroid of Graph G = (V,E)
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Ground set: E (edges) Independent sets: F (forests of ()

Basic properties: @ € F + hereditary property
 Empty graph has no cycles, removing edges doesn’t create cycles

Independent set exchange property:
* @Given Tl, ?2 S.t. |T1| > |T2|
— de € F; \ F, s.t. F, U {e}is a forest

* F, needs to have an edge e connecting two components of F,

— Because it can only have |F,| edges connecting nodes inside components

edge e can be O
added to F,

k nodes
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Greedoid

 Matroids can be generalized even more

* Relax hereditary property:
Replace A'€Ael] = A €l

by O+A€l = HFa€A s.t. A\{a}el

* Augmentation property holds as before

* Under certain conditions on the weights, greedy is optimal for
computing the max. weight A € [ of a greedoid.
— Additional conditions automatically satisfied by hereditary property

 More general than matroids
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