
Algorithm Theory

Chapter 3

Dynamic Programming

Part II:
Matrix Chain Multiplication

Fabian Kuhn

Algorithm Theory Fabian Kuhn 2

„Memoization“ for increasing the efficiency of a recursive solution:
• Only the first time a sub-problem is encountered, its solution is computed

and then stored in a table. Each subsequent time that the subproblem is
encountered, the value stored in the table is simply looked up and returned
(without repeated computation!).

Dynamic programming / memoization can be applied if
• Optimal solution contains optimal solutions to sub-problems

(recursive structure)

• Number of sub-problems that need to be considered is small

Time is at least linear in the number of subproblems.

Computing the solution:
• For each sub-problem, store how the value is obtained (according to which

recursive rule).

Dynamic Programming

Algorithm Theory Fabian Kuhn 3

Matrix-chain multiplication

Given: sequence (chain) 𝐴1, 𝐴2, … , 𝐴𝑛 of matrices

Goal: compute the product 𝐴1  𝐴2 …  𝐴𝑛

Problem: Parenthesize the product in a way that minimizes
the number of scalar multiplications.

Definition: A product of matrices is fully parenthesized if it is

• a single matrix

• or the product of two fully parenthesized matrix products,
surrounded by parentheses.

Algorithm Theory Fabian Kuhn 4

All possible fully parenthesized matrix products of the chain
𝐴1, 𝐴2, 𝐴3, 𝐴4:

(𝐴1 (𝐴2 (𝐴3𝐴4)))

(𝐴1 ((𝐴2𝐴3) 𝐴4))

((𝐴1𝐴2)(𝐴3𝐴4))

((𝐴1 (𝐴2𝐴3)) 𝐴4)

(((𝐴1𝐴2)𝐴3) 𝐴4)

Example

Algorithm Theory Fabian Kuhn 5

Different parenthesizations

Different parenthesizations correspond to different trees:

𝐴1 𝐴2 𝐴3𝐴4

𝐴1 𝐴2𝐴3 𝐴4

𝐴1𝐴2 𝐴3𝐴4

𝐴1𝐴2 𝐴3 𝐴4

Algorithm Theory Fabian Kuhn 6

Number of different parenthesizations

• Let 𝑃(𝑛) be the number of alternative parenthesizations of
the product 𝐴1 ⋅ … ⋅ 𝐴𝑛:

•

𝑃 1 = 1

𝑃 𝑛 = ෍

𝑘=1

𝑛−1

𝑃 𝑘 ⋅ 𝑃(𝑛 − 𝑘) , for 𝑛 ≥ 2

𝑃 𝑛 + 1 =
1

𝑛 + 1
2𝑛
𝑛

≈
4𝑛

𝑛 𝜋𝑛
+ 𝑂

4𝑛

𝑛5

𝑃 𝑛 + 1 = 𝐶𝑛 (𝑛𝑡ℎ Catalan number)

• Thus: Exhaustive search needs exponential time!

exponential in 𝑛

Algorithm Theory Fabian Kuhn 7

Multiplying Two Matrices

𝐴 = 𝑎𝑖𝑗 𝑝×𝑞
, 𝐵 = 𝑏𝑖𝑗 𝑞×𝑟

, 𝐴 ⋅ 𝐵 = 𝐶 = 𝑐𝑖𝑗 𝑝×𝑟

𝑐𝑖𝑗 = ෍

𝑘=1

𝑞

𝑎𝑖𝑘𝑏𝑘𝑗

Algorithm Matrix-Mult

Input: (𝑝 × 𝑞) matrix 𝐴, 𝑞 × 𝑟 matrix 𝐵

Output: (𝑝 × 𝑟) matrix 𝐶 = 𝐴 ⋅ 𝐵
1 for 𝑖 ≔ 1 to 𝑝 do
2 for 𝑗 ≔ 1 to 𝑟 do
3 𝐶 𝑖, 𝑗 ≔ 0;
4 for 𝑘 ≔ 1 to 𝑞 do
5 𝐶 𝑖, 𝑗 ≔ 𝐶 𝑖, 𝑗 + 𝐴 𝑖, 𝑘 ⋅ 𝐵[𝑘, 𝑗]

Number of multiplications and additions: 𝒑  𝒒  𝒓

Remark:

Using this algorithm, multiplying
two (𝑛  𝑛) matrices requires 𝑛3

multiplications. This can also be
done faster, using only 𝑂(𝑛2.373)
multiplications.

using divide-and-conquer

Algorithm Theory Fabian Kuhn 8

Matrix-chain multiplication: Example

Computation of the product 𝐴1𝐴2𝐴3 , where

𝐴1 : (50  5) matrix

𝐴2 : (5  100) matrix

𝐴3 : (100  10) matrix

a) Parenthesization ((𝐴1𝐴2)𝐴3) and 𝐴1 𝐴2𝐴3 require:

𝐴′ = (𝐴1𝐴2): 𝐴
′′ = (𝐴2𝐴3):

𝐴′𝐴3: 𝐴1𝐴′′:

Sum:

50 ⋅ 5 ⋅ 100 = 25′000 5 ⋅ 100 ⋅ 10 = 5′000

50 ⋅ 100 ⋅ 10 = 50′000 50 ⋅ 5 ⋅ 10 = 2′500

75′000 7′500

50 × 100 5 × 10

Algorithm Theory Fabian Kuhn 9

Structure of an Optimal Parenthesization

• (𝐴ℓ…𝑟): optimal parenthesization of 𝐴ℓ ⋅ … ⋅ 𝐴𝑟

For some 1 ≤ 𝑘 < 𝑛: 𝑨𝟏…𝒏 = 𝑨𝟏…𝒌 ⋅ 𝑨𝒌+𝟏…𝒏

• Any optimal solution contains optimal solutions for sub-problems

• Assume matrix 𝐴𝑖 is a 𝑑𝑖−1 × 𝑑𝑖 -matrix

• Cost to solve sub-problem 𝐴ℓ ⋅ … ⋅ 𝐴𝑟 , ℓ ≤ 𝑟 optimally: 𝐶(ℓ, 𝑟)

• Then:
𝐶 ℓ, 𝑟 = min

ℓ≤𝑘<𝑟
𝐶 ℓ, 𝑘 + 𝐶 𝑘 + 1, 𝑟 + 𝑑ℓ−1𝑑𝑘𝑑𝑟

𝐶 ℓ, ℓ = 0

Algorithm Theory Fabian Kuhn 10

Recursive Computation of Opt. Solution

Compute 𝐴1 ⋅ 𝐴2 ⋅ 𝐴3 ⋅ 𝐴4 ⋅ 𝐴5:

𝐶(1,2) 𝐶(1,3) 𝐶(1,4) 𝐶(2,5)

𝐶(2,3)𝐶(1,2)

𝐶(3,5) 𝐶(4,5)

𝐶(1,3)𝐶(1,2) 𝐶(2,4)𝐶(2,3) 𝐶(2,3)𝐶(2,4) 𝐶(4,5)𝐶(3,5)

𝐶(4,5)𝐶(3,4)

𝐶(2,3)𝐶(1,2) 𝐶(3,4)𝐶(2,3) 𝐶(3,4)𝐶(2,3) 𝐶(4,5)𝐶(3,4)

𝐶(1,5)

Algorithm Theory Fabian Kuhn 11

Using Meomization

Compute 𝐴1 ⋅ 𝐴2 ⋅ 𝐴3 ⋅ 𝐴4 ⋅ 𝐴5:

Compute 𝐴1 ⋅ … ⋅ 𝐴𝑛:

• Each 𝐶(𝑖, 𝑗), 𝑖 < 𝑗 is computed exactly once  𝑂 𝑛2 values

• Each 𝐶(𝑖, 𝑗) dir. depends on 𝐶(𝑖, 𝑘), 𝐶(𝑘, 𝑗) for 𝑖 < 𝑘 < 𝑗

Cost for each 𝐶(𝑖, 𝑗): 𝑂(𝑛) overall time: 𝑶 𝒏𝟑

𝐶(1,2) 𝐶(2,3) 𝐶(3,4) 𝐶(4,5)

𝐶(1,3) 𝐶(2,4) 𝐶(3,5)

𝐶(1,4) 𝐶(2,5)

𝐶(1,5)

Algorithm Theory Fabian Kuhn 12

Remarks about matrix-chain multiplication

1. There is an algorithm that determines an optimal
parenthesization in time

𝑂 𝑛 ⋅ log 𝑛 .
[Hu, Shing; 1980]

2. There is a linear time algorithm that determines a
parenthesization using at most

1.155 ⋅ 𝐶(1, 𝑛)

multiplications.
[Hu, Shing; 1981]

