Algorithm Theory

Chapter 3
Dynamic Programming

Part Il:
Matrix Chain Multiplication

Fabian Kuhn

UNI

FREIBURG



Dynamic Programming

UNI
f

FREIBURG

,Memoization” for increasing the efficiency of a recursive solution:

* Only the first time a sub-problem is encountered, its solution is computed
and then stored in a table. Each subsequent time that the subproblem is
encountered, the value stored in the table is simply looked up and returned
(without repeated computation!).

Dynamic programming / memoization can be applied if

e Optimal solution contains optimal solutions to sub-problems
(recursive structure)

* Number of sub-problems that need to be considered is small

Time is at least linear in the number of subproblems.

Computing the solution:

* For each sub-problem, store how the value is obtained (according to which
recursive rule).

Algorithm Theory Fabian Kuhn 2



Matrix-chain multiplication

UNI

FREIBURG

Given: sequence (chain) (4., 4,, ..., A,) of matrices

Goal: compute the product4;-4,-...- 4,

Problem: Parenthesize the product in a way that minimizes
the number of scalar multiplications.

Definition: A product of matrices is fully parenthesized if it is

* asingle matrix

e or the product of two fully parenthesized matrix products,
surrounded by parentheses.

Algorithm Theory Fabian Kuhn



Example

UNI

FREIBURG

All possible fully parenthesized matrix products of the chain

(A, A, A5, A,):

Algorithm Theory

(A, (A4,(434,)))
(A1 ((Az43) 44))
((A4;4;)(A34,))
((A4,(A4,43)) 44)

(((A14;)4;3) Ay)

Fabian Kuhn



UNI
f

FREIBURG

Different parenthesizations

Different parenthesizations correspond to different trees:

((A1A2)(A3A4))

(41(45(434,)))

(41((4242)4,) ) (((4142)45)4,)

Algorithm Theory Fabian Kuhn



Number of different parenthesizations .

UNI
FREIBURG

* Let P(n) be the number of alternative parenthesizations of
the product 4; - ...- A,;:

P(1) =1

n—1
P(n) = P(k) -P(n—k), forn > 2

exponential in n

Pn+1) = ! (2") il +0 il
T T i\n) T avmn T O\
P(n+1)=¢C, (n'"Catalan number)

* Thus: Exhaustive search needs exponential time!

Algorithm Theory Fabian Kuhn 6



UNI

Multiplying Two Matrices

FREIBURG

A=(ay), .. B=0y),, A B=C=(c)

q

Cij = z Qi by

k=1

PXT

Remark:
Algorithm Matrix-Mult S

Input: (p X q) matrix 4, (g X r) matrix B | Using this algorithm, multiplying

Output: (p X ) matrixC = A-B two (n x n) matrices requires n3

1 fori:=1topdo multiplications. This can also be

2 forj:=1tordo done faster, using only 0 (n%373

3 Cli,j] = 0; multiplications.

4 fork := 1toqdo /L
> Cli,jl = Cli, jl + Ali, k] - B[k, j] using divide-and-conquer

Number of multiplications and additions: p - q - r

Algorithm Theory Fabian Kuhn 7



Matrix-chain multiplication: Example

UNI

Computation of the product A, 4, A5, where

A, : (50 x 5) matrix
A, : (5 x 100) matrix
A5 : (100 x 10) matrix

a) Parenthesization ((A; 4,)A;) and (A (4,43)) require:

A'= (A;A)):50-5-100 = 25000 A" = (AyA43): 5-100-10 = 5’000

50 X 100 5x10
A’A3: 50-100-10 = 50’000 AlA": 50-5-10 = 2'500
Sum: 75’000 7’500

Algorithm Theory Fabian Kuhn 8

FREIBURG



Structure of an Optimal Parenthesization _

UNI
FREIBURG

(A, ,):optimal parenthesization of A, - ...- A,

Forsome 1 < k <n: (Ay ) = ((A1.1) - (As1.n))
Any optimal solution contains optimal solutions for sub-problems
Assume matrix A; is a (d;_; X d;)-matrix

Cost to solve sub-problem 4, - ...- A,., £ < r optimally: C(£,7)

Then:
C(l,r)= {)mkig {CE,k)+Ck+1,r)+d,_1dsd,}
< r

C#,%)=0

Algorithm Theory Fabian Kuhn 9



Recursive Computation of Opt. Solution

UNI
FREIBURG

Compute A; - A, - A3 - A4 - As:

£15)

C(1,2) C(1,3) C(1,4) C(2,5) C(3,5) C(4,5)

m

C(12) ) C(13) €R3)) €24 €24 CR3) CBS). CAS5)

C(1,2) C(34) ([€(23)) C34) €34 €45
c@3) \

Algorithm Theory Fabian Kuhn 10




UNI

Using Meomization

FREIBURG

Compute A; - A, - A3 - A4 - As:

Compute A4 - ...~ A,:
* Each C(i,j), i < jiscomputed exactly once = O(nz) values
* Each C(i,j) dir.dependson C(i,k), C(k,j) fori <k <j

Cost for each C(i,j): O(n) =2 overall time: 0(n3)

Algorithm Theory Fabian Kuhn 11



Remarks about matrix-chain multiplication _

UNI
FREIBURG

1. There is an algorithm that determines an optimal
parenthesization in time

O(n - logn).
[Hu, Shing; 1980]

2. There is a linear time algorithm that determines a
parenthesization using at most

1.155-C(1,n)

multiplications.
[Hu, Shing; 1981]

Algorithm Theory Fabian Kuhn 12



