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Dynamic Programming
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,Memoization” for increasing the efficiency of a recursive solution:

* Only the first time a sub-problem is encountered, its solution is computed
and then stored in a table. Each subsequent time that the subproblem is
encountered, the value stored in the table is simply looked up and returned
(without repeated computation!).

Dynamic programming / memoization can be applied if

e Optimal solution contains optimal solutions to sub-problems
(recursive structure)

* Number of sub-problems that need to be considered is small

Time is at least linear in the number of subproblems.

Computing the solution:

* For each sub-problem, store how the value is obtained (according to which
recursive rule).
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Matrix-chain multiplication
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Given: sequence (chain) (4., 4,, ..., A,) of matrices

Goal: compute the product4;-4,-...- 4,

Problem: Parenthesize the product in a way that minimizes
the number of scalar multiplications.

Definition: A product of matrices is fully parenthesized if it is

* asingle matrix

e or the product of two fully parenthesized matrix products,
surrounded by parentheses.
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Example
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All possible fully parenthesized matrix products of the chain

(A, A, A5, A,):
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(A, (A4,(434,)))
(A1 ((Az43) 44))
((A4;4;)(A34,))
((A4,(A4,43)) 44)

(((A14;)4;3) Ay)
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Different parenthesizations

Different parenthesizations correspond to different trees:

((A1A2)(A3A4))

(41(45(434,)))

(41((4242)4,) ) (((4142)45)4,)
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Number of different parenthesizations .
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* Let P(n) be the number of alternative parenthesizations of
the product 4; - ...- A,;:

P(1) =1

n—1
P(n) = P(k) -P(n—k), forn > 2

exponential in n

Pn+1) = ! (2") il +0 il
T T i\n) T avmn T O\
P(n+1)=¢C, (n'"Catalan number)

* Thus: Exhaustive search needs exponential time!
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Multiplying Two Matrices
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A=(ay), .. B=0y),, A B=C=(c)

q

Cij = z Qi by

k=1

PXT

Remark:
Algorithm Matrix-Mult S

Input: (p X q) matrix 4, (g X r) matrix B | Using this algorithm, multiplying

Output: (p X ) matrixC = A-B two (n x n) matrices requires n3

1 fori:=1topdo multiplications. This can also be

2 forj:=1tordo done faster, using only 0 (n%373

3 Cli,j] = 0; multiplications.

4 fork := 1toqdo /L
> Cli,jl = Cli, jl + Ali, k] - B[k, j] using divide-and-conquer

Number of multiplications and additions: p - q - r
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Matrix-chain multiplication: Example
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Computation of the product A, 4, A5, where

A, : (50 x 5) matrix
A, : (5 x 100) matrix
A5 : (100 x 10) matrix

a) Parenthesization ((A; 4,)A;) and (A (4,43)) require:

A'= (A;A)):50-5-100 = 25000 A" = (AyA43): 5-100-10 = 5’000

50 X 100 5x10
A’A3: 50-100-10 = 50’000 AlA": 50-5-10 = 2'500
Sum: 75’000 7’500
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Structure of an Optimal Parenthesization _
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(A, ,):optimal parenthesization of A, - ...- A,

Forsome 1 < k <n: (Ay ) = ((A1.1) - (As1.n))
Any optimal solution contains optimal solutions for sub-problems
Assume matrix A; is a (d;_; X d;)-matrix

Cost to solve sub-problem 4, - ...- A,., £ < r optimally: C(£,7)

Then:
C(l,r)= {)mkig {CE,k)+Ck+1,r)+d,_1dsd,}
< r

C#,%)=0

Algorithm Theory Fabian Kuhn 9



Recursive Computation of Opt. Solution
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Compute A; - A, - A3 - A4 - As:

£15)

C(1,2) C(1,3) C(1,4) C(2,5) C(3,5) C(4,5)

m

C(12) ) C(13) €R3)) €24 €24 CR3) CBS). CAS5)

C(1,2) C(34) ([€(23)) C34) €34 €45
c@3) \

Algorithm Theory Fabian Kuhn 10




UNI

Using Meomization

FREIBURG

Compute A; - A, - A3 - A4 - As:

Compute A4 - ...~ A,:
* Each C(i,j), i < jiscomputed exactly once = O(nz) values
* Each C(i,j) dir.dependson C(i,k), C(k,j) fori <k <j

Cost for each C(i,j): O(n) =2 overall time: 0(n3)
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Remarks about matrix-chain multiplication _
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1. There is an algorithm that determines an optimal
parenthesization in time

O(n - logn).
[Hu, Shing; 1980]

2. There is a linear time algorithm that determines a
parenthesization using at most

1.155-C(1,n)

multiplications.
[Hu, Shing; 1981]
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